Formation of Mn–Ni Prussian Blue Analogue Spheres as a Superior Cathode Material for Potassium-Ion Batteries

[1]  Qinghua Zhang,et al.  Synthesis of KVPO4F/Carbon Porous Single Crystalline Nanoplates for High-Rate Potassium-Ion Batteries. , 2022, Nano letters.

[2]  X. Rui,et al.  Chemically Binding Vanadium Sulfide in Carbon Carriers to Boost Reaction Kinetics for Potassium Storage. , 2022, ACS applied materials & interfaces.

[3]  Lijun Zhao,et al.  Micron-sized NiMn-glycerate solid spheres as cathode materials for all-solid-state asymmetric supercapacitor with superior energy density and cycling life , 2022, Chemical Engineering Journal.

[4]  Wenping Sun,et al.  Engineering of Crosslinked Network and Functional Interlayer to Boost Cathode Performance of Tannin for Potassium Metal Batteries , 2022, Advanced Functional Materials.

[5]  S. Dou,et al.  Ice-Assisted Synthesis of Highly Crystallized Prussian Blue Analogues for All-Climate and Long-Calendar-Life Sodium Ion Batteries. , 2022, Nano letters.

[6]  Jiang Zhou,et al.  Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries , 2021, Nature Sustainability.

[7]  Feiyu Kang,et al.  Coexistence of two coordinated states contributing to high-voltage and long-life Prussian blue cathode for potassium ion battery , 2021, Chemical Engineering Journal.

[8]  Xianhua Hou,et al.  Reactant Concentration and Aging-Time-Regulated Potassium Manganese Hexacyanoferrate as a Superior Cathode for Sodium-Ion Batteries , 2021, ACS Applied Energy Materials.

[9]  A. Cao,et al.  High‐Performance Cathode Materials for Potassium‐Ion Batteries: Structural Design and Electrochemical Properties , 2021, Advanced materials.

[10]  J. Bouwer,et al.  Epitaxial Nickel Ferrocyanide Stabilizes Jahn–Teller Distortions of Manganese Ferrocyanide for Sodium‐Ion Batteries , 2021, Angewandte Chemie.

[11]  Qingsong Wang,et al.  High‐Entropy Metal–Organic Frameworks for Highly Reversible Sodium Storage , 2021, Advanced materials.

[12]  Wenguang Zhao,et al.  Zn2+ Induced Phase Transformation of K2MnFe(CN)6 Boosts Highly Stable Zinc‐Ion Storage , 2021, Advanced Energy Materials.

[13]  Jiangwei Wang,et al.  Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries , 2021, Nature Communications.

[14]  Michaela Warnecke,et al.  Effect of the reactants concentration on the synthesis and cycle life of copper hexacyanoferrate for aqueous Zn-ion batteries , 2021 .

[15]  H. Pang,et al.  Recent advancements in Prussian blue analogues: Preparation and application in batteries , 2021 .

[16]  Wenli Zhang,et al.  Enhanced electrochemical performance of MnFe@NiFe Prussian blue analogue benefited from the inhibition of Mn ions dissolution for sodium-ion batteries , 2021 .

[17]  F. Kang,et al.  Simple Synthesis of K0.5VOPO4·1.5H2O/Graphene Oxide Composite as a Cathode Material for Potassium-Ion Batteries , 2021 .

[18]  F. Pan,et al.  Structure and Properties of Prussian Blue Analogues in Energy Storage and Conversion Applications , 2020, Advanced Functional Materials.

[19]  Gongzheng Yang,et al.  High-voltage non-aqueous Zn/K1.6Mn1.2Fe(CN)6 batteries with zero capacity loss in extremely long working duration , 2020 .

[20]  Sheng-wu Guo,et al.  Potassium Nickel Iron Hexacyanoferrate as Ultra-Long Life Cathode Material for Potassium Ion Batteries with High Energy Density. , 2020, ACS nano.

[21]  Chenghao Yang,et al.  P3-type K0.5Mn0.72Ni0.15Co0.13O2 microspheres as cathode materials for high performance potassium-ion batteries , 2020 .

[22]  T. Deng,et al.  Realizing Complete Solid‐Solution Reaction in High Sodium Content P2‐Type Cathode for High‐Performance Sodium‐Ion Batteries , 2020, Angewandte Chemie.

[23]  Zhichuan J. Xu,et al.  Unconventional Mn Vacancies in Mn–Fe Prussian Blue Analogs: Suppressing Jahn-Teller Distortion for Ultrastable Sodium Storage , 2020 .

[24]  J. Xu,et al.  A Yolk-Shell Structured FePO4 Cathode for High-Rate and Long-Cycling Sodium-Ion Batteries. , 2020, Angewandte Chemie.

[25]  M. Giorgetti,et al.  Lattice Compensation to Jahn–Teller Distortion in Na-Rich Manganese Hexacyanoferrate for Li-Ion Storage: An Operando Study , 2020 .

[26]  Yaxiang Lu,et al.  Pitch‐Derived Soft Carbon as Stable Anode Material for Potassium Ion Batteries , 2020, Advanced materials.

[27]  Yun Qiao,et al.  A Heterostructure Coupling of Bioinspired, Adhesive Polydopamine, and Porous Prussian Blue Nanocubics as Cathode for High-Performance Sodium-Ion Battery. , 2020, Small.

[28]  K. Kubota,et al.  Research Development on K-Ion Batteries. , 2020, Chemical reviews.

[29]  Yongchang Liu,et al.  Hierarchical Engineering of Porous P2‐Na2/3Ni1/3Mn2/3O2 Nanofibers Assembled by Nanoparticles Enables Superior Sodium‐Ion Storage Cathodes , 2019, Advanced Functional Materials.

[30]  G. Cao,et al.  Potassium nickel hexacyanoferrate as cathode for high voltage and ultralong life potassium-ion batteries , 2019, Energy Storage Materials.

[31]  Jiaqi Huang,et al.  Ion-exchange synthesis of high-energy-density prussian blue analogues for sodium ion battery cathodes with fast kinetics and long durability , 2019, Journal of Power Sources.

[32]  Bin Huang,et al.  Improving Potassium-Ion Batteries by Optimizing the Composition of Prussian Blue Cathode , 2019, ACS Applied Energy Materials.

[33]  Y. Chiang,et al.  Effect of Concentrated Diglyme-Based Electrolytes on the Electrochemical Performance of Potassium-Ion Batteries , 2019, ACS Applied Energy Materials.

[34]  Chenglong Zhao,et al.  Building aqueous K-ion batteries for energy storage , 2019, Nature Energy.

[35]  Jun Lu,et al.  Reverse Dual-Ion Battery via a ZnCl2 Water-in-Salt Electrolyte. , 2019, Journal of the American Chemical Society.

[36]  J. Barker,et al.  The Scale‐up and Commercialization of Nonaqueous Na‐Ion Battery Technologies , 2018 .

[37]  Chen Wu,et al.  Prussian Blue Cathode Materials for Sodium‐Ion Batteries and Other Ion Batteries , 2018 .

[38]  Xiulei Ji,et al.  Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities , 2017 .

[39]  A. Manthiram,et al.  Low-Cost High-Energy Potassium Cathode. , 2017, Journal of the American Chemical Society.

[40]  O. Bondarchuk,et al.  Higher voltage plateau cubic Prussian White for Na-ion batteries , 2016 .

[41]  Shinichi Komaba,et al.  Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors , 2015 .

[42]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[43]  A. Eftekhari Potassium secondary cell based on Prussian blue cathode , 2004 .