Intelligent control of a nonlinear tank reactor based on Lyapunov direct method

In this paper, intelligent control of the outlet flow concentration of a non-thermic Catalytic Continuous Stirred Tank Reactor (CSTR) is addressed. Control command is the sum of two control commands: steady state and transient commands. A fuzzy controller generates transient control command pushing the system towards the reference (desired situation). Steady state control command is generated to maintain steady state situation (based on the concept of ‘control equilibrium point’). This research is performed in simulation environment; however, the mathematical model of the system is not used during stability analysis to keep the methodology useful in case of considerable uncertainties; instead, some obvious facts about the system in the form of fuzzy rules are used for stability analysis, namely ‘fuzzy rough model’. Using this technique, Lyapunov asymptotic stability of control system is proved. For comparison, the case study is also controlled by neuro-predictive algorithm. The studied CSTR is known as a very good example of neuro-predictive control application; however, the newly offered hybrid intelligent method leads much better reference tracking performance as well as less change in control command (which is very important in implementation).

[1]  Khaled Belarbi,et al.  Design of Mamdani fuzzy logic controllers with rule base minimisation using genetic algorithm , 2005, Eng. Appl. Artif. Intell..

[2]  Yi Cao,et al.  Differential recurrent neural network based predictive control , 2008, Comput. Chem. Eng..

[3]  Dingli Yu,et al.  A stable self-learning PID control for multivariable time varying systems , 2007 .

[4]  Yong-Yan Cao,et al.  Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach , 2000, IEEE Trans. Fuzzy Syst..

[5]  Hak-Keung Lam,et al.  BMI-Based Stability and Performance Design for Fuzzy-Model-Based Control Systems Subject to Parameter Uncertainties , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  Wei Wu,et al.  Adaptive-like control methodologies for a CSTR system with dynamic actuator constraints , 2003 .

[7]  Wen-June Wang,et al.  Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[8]  Huijun Gao,et al.  Stabilization of Nonlinear Systems Under Variable Sampling: A Fuzzy Control Approach , 2007, IEEE Transactions on Fuzzy Systems.

[9]  Hyun-Ku Rhee,et al.  Modeling and control of continuous stirred tank reactor for thermal copolymerization , 1998 .

[10]  Jian Liang Wang,et al.  Improved robust model predictive control with structured uncertainty , 2007 .

[11]  Cihan Karakuzu Fuzzy controller training using particle swarm optimization for nonlinear system control. , 2008, ISA transactions.

[12]  Ali Elkamel,et al.  Optimal tuning of PID controllers for FOPTD, SOPTD and SOPTD with lead processes , 2008 .

[13]  Chih-Lyang Hwang,et al.  Fuzzy Neural-Based Control for Nonlinear Time-Varying Delay Systems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[14]  Antonio Sala,et al.  Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem , 2007, Fuzzy Sets Syst..

[15]  Prodromos Daoutidis,et al.  Compensation of measurable disturbances for two-time-scale nonlinear systems , 1996, Autom..

[16]  Y.-J. Chen,et al.  Relaxed Stabilization Criteria for Discrete-Time T–S Fuzzy Control Systems Based on a Switching Fuzzy Model and Piecewise Lyapunov Function , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[17]  R Senthil,et al.  Design of observer based nonlinear model predictive controller for continuous stirred tank reactor , 2007 .

[18]  Yasar Becerikli,et al.  Modified descend curvature based fixed form fuzzy optimal control of nonlinear dynamical systems , 2006, Comput. Chem. Eng..