The particle filters and their applications

Particle filtering is a Monte Carlo simulation method designed to approximate non-linear filters that estimate and track the state of a dynamic system. We present the general principle of these algorithms and show the wide domain of applications using some examples.

[1]  Vivien Rossi,et al.  Approche non paramétrique du filtrage de système non linéaire à temps discret et à paramètres inconnus , 2005 .

[2]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[3]  Prem K. Goel,et al.  Bayesian estimation via sequential Monte Carlo sampling - Constrained dynamic systems , 2007, Autom..

[4]  Siem Jan Koopman,et al.  Time Series Analysis by State Space Methods , 2001 .

[5]  Pierre Del Moral,et al.  Feynman-Kac formulae , 2004 .

[6]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[7]  B. Bakshi,et al.  Bayesian estimation via sequential Monte Carlo sampling: Unconstrained nonlinear dynamic systems , 2004 .

[8]  BlakeAndrew,et al.  C ONDENSATION Conditional Density Propagation forVisual Tracking , 1998 .

[9]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[10]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[11]  A. Doucet,et al.  Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.

[12]  Jean Jacod,et al.  Interacting Particle Filtering With Discrete Observations , 2001, Sequential Monte Carlo Methods in Practice.

[13]  M. Eisen,et al.  Probability and its applications , 1975 .

[14]  Laurent Mevel,et al.  Exponential Forgetting and Geometric Ergodicity in Hidden Markov Models , 2000, Math. Control. Signals Syst..

[15]  F. Gland,et al.  STABILITY AND UNIFORM APPROXIMATION OF NONLINEAR FILTERS USING THE HILBERT METRIC AND APPLICATION TO PARTICLE FILTERS1 , 2004 .

[16]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[17]  P. Moral,et al.  On the stability of interacting processes with applications to filtering and genetic algorithms , 2001 .

[18]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[19]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[20]  L. Schwartz On Bayes procedures , 1965 .

[21]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[22]  G. Prato,et al.  Asymptotic Ergodicity of the Process of Conditional Law in Some Problem of Non-linear Filtering , 1999 .

[23]  Jean-Pierre Vila,et al.  Nonlinear filtering in discrete time : A particle convolution approach , 2006 .

[24]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  Douglas B. Kell,et al.  Automatic tracking of biological cells and compartments using particle filters and active contours , 2006 .

[26]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.