The Isabelle Framework

Isabelle, which is available from http://isabelle.in.tum.de , is a generic framework for interactive theorem proving. The Isabelle/Puremeta-logic allows the formalization of the syntax and inference rules of a broad range of object-logics following the general idea of natural deduction [32,33]. The logical core is implemented according to the well-known "LCF approach" of secure inferences as abstract datatype constructors in ML [16]; explicit proof terms are also available [8]. Isabelle/Isarprovides sophisticated extra-logical infrastructure supporting structured proofs and specifications, including concepts for modular theory development. Isabelle/HOLis a large application within the generic framework, with plenty of logic-specific add-on tools and a large theory library. Other notable object-logics are Isabelle/ZF(Zermelo-Fraenkel set-theory, see [34,36] and Isabelle/HOLCF[26] (Scott's domain theory within HOL). Users can build further formal-methods tools on top, e.g. see [53].

[1]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[2]  David Aspinall,et al.  Formalising Java's Data Race Free Guarantee , 2007, TPHOLs.

[3]  Andreas Lochbihler Type Safe Nondeterminism ñ A Formal Semantics of Java Threads , 2007 .

[4]  Lawrence C. Paulson,et al.  Isabelle: The Next 700 Theorem Provers , 2000, ArXiv.

[5]  Stefan Berghofer,et al.  Logic-Free Reasoning in Isabelle/Isar , 2008, AISC/MKM/Calculemus.

[6]  Tjark Weber,et al.  Bounded Model Generation for Isabelle/HOL , 2005, D/PDPAR@IJCAR.

[7]  Tobias Nipkow,et al.  Proof Terms for Simply Typed Higher Order Logic , 2000, TPHOLs.

[8]  Christian Urban,et al.  Nominal Techniques in Isabelle/HOL , 2005, Journal of Automated Reasoning.

[9]  Christoph Lüth,et al.  A Framework for Interactive Proof , 2007, Calculemus/MKM.

[10]  Maribel Fernández,et al.  Curry-Style Types for Nominal Terms , 2006, TYPES.

[11]  Einar Broch Johnsen,et al.  Structured Formal Development in Isabelle , 2006, Nord. J. Comput..

[12]  Piergiorgio Odifreddi,et al.  Logic and computer science , 1990 .

[13]  Lawrence C. Paulson,et al.  Source-Level Proof Reconstruction for Interactive Theorem Proving , 2007, TPHOLs.

[14]  Markus Wenzel,et al.  Type Classes and Overloading in Higher-Order Logic , 1997, TPHOLs.

[15]  Gertrud Bauer,et al.  Calculational Reasoning Revisited (An Isabelle/Isar Experience) , 2001, TPHOLs.

[16]  Richard J. Boulton,et al.  Theorem Proving in Higher Order Logics , 2003, Lecture Notes in Computer Science.

[17]  Stefan Berghofer,et al.  Inductive Datatypes in HOL - Lessons Learned in Formal-Logic Engineering , 1999, TPHOLs.

[18]  Tobias Nipkow,et al.  Executing Higher Order Logic , 2000, TYPES.

[19]  Lawrence C. Paulson Organizing Numerical Theories Using Axiomatic Type Classes , 2004, Journal of Automated Reasoning.

[20]  Lawrence C. Paulson,et al.  A comparison of the mathematical proof languages Mizar and Isar , 2002 .

[21]  Lawrence Charles Paulson The Relative Consistency of the Axiom of Choice Mechanized Using Isabelle⁄zf , 2021, 2104.12674.

[22]  Tobias Nipkow,et al.  An operational semantics and type safety prooffor multiple inheritance in C++ , 2006, OOPSLA '06.

[23]  Lawrence C. Paulson,et al.  Generic Automatic Proof Tools , 1997, ArXiv.

[24]  Tobias Nipkow,et al.  Random testing in Isabelle/HOL , 2004, Proceedings of the Second International Conference on Software Engineering and Formal Methods, 2004. SEFM 2004..

[25]  Tobias Nipkow,et al.  Order-sorted polymorphism in Isabelle , 1993 .

[26]  Lawrence C. Paulson,et al.  Set theory for verification. II: Induction and recursion , 1995, Journal of Automated Reasoning.

[27]  Florian Kammüller,et al.  Locales - A Sectioning Concept for Isabelle , 1999, TPHOLs.

[28]  Tobias Nipkow,et al.  Flyspeck I: Tame Graphs , 2006, IJCAR.

[29]  Makarius Wenzel Isabelle/Isar — a Generic Framework for Human-Readable Proof Documents , 2007 .

[30]  Michael J. C. Gordon,et al.  Edinburgh LCF: A mechanised logic of computation , 1979 .

[31]  Markus Wenzel,et al.  Constructive Type Classes in Isabelle , 2006, TYPES.

[32]  Michael Norrish,et al.  Types, bytes, and separation logic , 2007, POPL '07.

[33]  David Aspinall,et al.  Proof General: A Generic Tool for Proof Development , 2000, TACAS.

[34]  Tobias Nipkow,et al.  A Compiled Implementation of Normalization by Evaluation , 2008, TPHOLs.

[35]  Freek Wiedijk,et al.  A Comparison of Mizar and Isar , 2004, Journal of Automated Reasoning.

[36]  Alan Bundy,et al.  Automated Deduction — CADE-12 , 1994, Lecture Notes in Computer Science.

[37]  C PaulsonLawrence Set theory for verification. I , 1993 .

[38]  Freek Wiedijk,et al.  The Seventeen Provers of the World , 2006 .

[39]  Lawrence C. Paulson,et al.  A Generic Tableau Prover and its Integration with Isabelle , 1999, J. Univers. Comput. Sci..

[40]  Lawrence C. Paulson,et al.  The Relative Consistency of the Axiom of Choice - Mechanized Using Isabelle/ZF , 2008, CiE.

[41]  Elena Petrova,et al.  Pervasive Compiler Verification - From Verified Programs to Verified Systems , 2008, Electron. Notes Theor. Comput. Sci..

[42]  Robin Milner,et al.  Edinburgh lcf: a mechanized logic of computation , 1978 .

[43]  Alexander Krauss Partial Recursive Functions in Higher-Order Logic , 2006, IJCAR.

[44]  Lawrence C. Paulson,et al.  Set theory for verification: I. From foundations to functions , 1993, Journal of Automated Reasoning.

[45]  Freek Wiedijk,et al.  The Seventeen Provers of the World, Foreword by Dana S. Scott , 2006, The Seventeen Provers of the World.

[46]  Jeremy Avigad,et al.  A formally verified proof of the prime number theorem , 2005, TOCL.

[47]  Tobias Nipkow,et al.  A Proof Assistant for Higher-Order Logic , 2002 .

[48]  Stefan M. Petters,et al.  Towards trustworthy computing systems: taking microkernels to the next level , 2007, OPSR.

[49]  Markus Wenzel,et al.  Isar - A Generic Interpretative Approach to Readable Formal Proof Documents , 1999, TPHOLs.

[50]  Tobias Nipkow,et al.  Flyspeck II: the basic linear programs , 2009, Annals of Mathematics and Artificial Intelligence.

[51]  Robert Veroff,et al.  Automated Reasoning and Its Applications: Essays in Honor of Larry Wos , 1997 .

[52]  Stefan Berghofer,et al.  Theorem Proving in Higher Order Logics --- Emerging Trends Proceedings , 2009 .

[53]  Markus Wenzel,et al.  Isabelle/Isar , 2006, The Seventeen Provers of the World.

[54]  Burkhart Wolff,et al.  Building Formal Method Tools in the Isabelle/Isar Framework , 2007, TPHOLs.

[55]  J. Storer Induction and Recursion , 2002 .

[56]  Markus Wenzel,et al.  Context Aware Calculation and Deduction , 2007, Calculemus/MKM.

[57]  Lawrence C. Paulson,et al.  A Fixedpoint Approach to Implementing (Co)Inductive Definitions , 1994, CADE.

[58]  Tobias Nipkow,et al.  HOLCF = HOL + LCF , 1999, Journal of Functional Programming.

[59]  Konrad Slind,et al.  Function Definition in Higher-Order Logic , 1996, TPHOLs.

[60]  Clemens Ballarin Locales and Locale Expressions in Isabelle/Isar , 2003, TYPES.

[61]  Clemens Ballarin,et al.  Interpretation of Locales in Isabelle: Theories and Proof Contexts , 2006, MKM.

[62]  Markus Wenzel,et al.  Local Theory Specifications in Isabelle/Isar , 2009, TYPES.

[63]  Markus Wenzel Structured Induction Proofs in Isabelle/Isar , 2006, MKM.

[64]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[65]  Tobias Nipkow,et al.  Structured Proofs in Isar/HOL , 2002, TYPES.

[66]  Lawrence C. Paulson,et al.  Natural Deduction as Higher-Order Resolution , 1986, J. Log. Program..

[67]  Christian Urban,et al.  Mechanizing the Metatheory of LF , 2008, LICS.

[68]  Tobias Nipkow,et al.  A machine-checked model for a Java-like language, virtual machine, and compiler , 2006, TOPL.

[69]  Artem Starostin,et al.  Formal Pervasive Verification of a Paging Mechanism , 2008, TACAS.

[70]  Makarius Wenzel,et al.  Context aware Calculation and Deduction Ring Equalities via Gröbner Bases in Isabelle , 2007 .

[71]  Tobias Nipkow,et al.  A Code Generator Framework for Isabelle / HOL , 2007 .

[72]  Reinhard Kahle Freek Wiedijk (Ed.), The Seventeen Provers of the World , 2007, Stud Logica.

[73]  Anna Philippou,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 2018, Lecture Notes in Computer Science.