A primal-dual active set algorithm for bilaterally control constrained optimal control problems

A generalized Moreau-Yosida based primal-dual active set algorithm for the solution of a representative class of bilaterally control constrained optimal control problems with boundary control is developed. The use of the generalized Moreau-Yosida approximation allows an efficient identification of the active and inactive sets at each iteration level. The method requires no step-size strategy and exhibits a finite termination property for the discretized problem class. In infinite as well as in finite dimensions a convergence analysis based on an augmented Lagrangian merit function is given. In a series of numerical tests the efficiency of the new algorithm is emphasized.

[1]  G. M. Troianiello,et al.  Elliptic Differential Equations and Obstacle Problems , 1987 .

[2]  J. C. Dunn,et al.  On L 2 Sufficient Conditions and the Gradient Projection Method for Optimal Control Problems , 1996 .

[3]  J. J. Moré,et al.  Algorithms for bound constrained quadratic programming problems , 1989 .

[4]  Karl Kunisch,et al.  A Comparison of Interior Point Methods and a Moreau-Yosida Based Active Set Strategy for Constrained , 1998 .

[5]  Jacques-Louis Lions Some Aspects of the Optimal Control of Distributed Parameter Systems , 1987 .

[6]  J. C. Dunn,et al.  On the Gradient Projection Method for Optimal Control Problems with Nonnegative ${\cal L}^2$ Inputs , 1994 .

[7]  Kazufumi Ito,et al.  Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces , 2000 .

[8]  M. Heinkenschloss,et al.  Global Convergence of Trust-Region Interior-Point Algorithms for Infinite-Dimensional Nonconvex Mini , 1999 .

[9]  Philip E. Gill,et al.  Practical optimization , 1981 .

[10]  Kazufumi Ito,et al.  Augmented Lagrangian-SQP-Methods in Hilbert Spaces and Application to Control in the Coefficients Problems , 1996, SIAM J. Optim..

[11]  Fredi Troltzsch,et al.  An SQP method for the optimal control of a nonlinear heat equation , 1994 .

[12]  Gerardo Toraldo,et al.  On the Solution of Large Quadratic Programming Problems with Bound Constraints , 1991, SIAM J. Optim..

[13]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[14]  Ekkehard W. Sachs,et al.  Inexact SQP Interior Point Methods and Large Scale Optimal Control Problems , 1999, SIAM J. Control. Optim..

[15]  Ekkehard W. Sachs,et al.  Multilevel Algorithms for Constrained Compact Fixed Point Problems , 1994, SIAM J. Sci. Comput..

[16]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[17]  K. Kunisch,et al.  Augmented Lagrangian Techniques for Elliptic State Constrained Optimal Control Problems , 1997 .

[18]  Chih-Jen Lin,et al.  Newton's Method for Large Bound-Constrained Optimization Problems , 1999, SIAM J. Optim..

[19]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[20]  D. Bertsekas Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[21]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[22]  Karl Kunisch,et al.  A Comparison of a Moreau-Yosida-Based Active Set Strategy and Interior Point Methods for Constrained Optimal Control Problems , 2000, SIAM J. Optim..

[23]  Karl Kunisch,et al.  Augemented Lagrangian Techniques for Elliptic State Constrained Optimal Control Problems , 1997 .

[24]  William W. Hager,et al.  Application of the dual active set algorithm to quadratic network optimization , 1993, Comput. Optim. Appl..

[25]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[26]  Donald Goldfarb,et al.  A numerically stable dual method for solving strictly convex quadratic programs , 1983, Math. Program..