Boundary layer study for an ocean related system with a small viscosity parameter

Abstract We study an ocean related system with a small viscosity parameter, which is the linearized version of the modified Primitive Equations. As the parameter goes to zero, a L ∞ convergence result is obtained together with the estimation on the thickness of the boundary layer.

[1]  R. Temam,et al.  Boundary Conditions for an Ocean Related System with a Small Parameter , 2005 .

[2]  Roger Temam,et al.  Boundary layers for the 2D linearized primitive equations , 2008 .

[3]  R. Temam,et al.  Boundary layers for the 3D primitive equations in a cube: The supercritical modes , 2016 .

[4]  W. Washington,et al.  An Introduction to Three-Dimensional Climate Modeling , 1986 .

[5]  J. Oliger,et al.  Theoretical and practical aspects of some initial-boundary value problems in fluid dynamics , 1976 .

[6]  R. Temam,et al.  Boundary layers for the subcritical modes of the 3D primitive equations in a cube , 2019, Journal of Differential Equations.

[7]  E. Titi,et al.  Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics , 2005, math/0503028.

[8]  Haim Brezis,et al.  Hardy's inequalities revisited , 1997 .

[9]  Roger Temam,et al.  On the equations of the large-scale ocean , 1992 .

[10]  E. Titi,et al.  Recent Advances Concerning Certain Class of Geophysical Flows , 2016, 1604.01695.

[11]  J. Lions,et al.  New formulations of the primitive equations of atmosphere and applications , 1992 .

[12]  R. Temam,et al.  Asymptotic analysis for the 3D primitive equations in a channel , 2012 .

[13]  Roger Temam,et al.  Boundary Layers in an Ocean Related System , 2004, J. Sci. Comput..

[14]  Roger Temam,et al.  Open Boundary Conditions for the Primitive and Boussinesq Equations , 2003 .