Differential Neuroprotection by Cyclosporin A and FK506 Following Ischemia Corresponds with Differing Abilities to Inhibit Calcineurin and the Mitochondrial Permeability Transition

Transient global or forebrain ischemia leads to severe brain damage following delayed neuronal cell death. We previously reported that cyclosporin A (CsA) provides near total suppression of brain damage in rat forebrain ischemia when allowed to pass the blood brain barrier, whereas Tacrolimus (FK506) is considerably less effective. We demonstrate herein that when administered prior to ischemic insult, both immunosuppressants equally block calcineurin, a type 2B Ser/Thr phosphatase, and efficiently inhibit dephosphorylation of pro-apoptotic protein Bad. CsA demonstrates more potent anti-ischemic effects than FK506, partially attributable to amelioration of mitochondrial damage as assayed in vivo and in vitro. These results suggest that pathways including calcineurin and cyclophilins, particularly mitochondrial cyclophilin D, play pivotal roles in ischemic brain damage. Since previous results have shown that CsA is efficacious also when administered after focal ischemia, the present findings give hints to clinical applications for new drugs for the treatment of ischemic damage in the brain as well as in the heart and liver.

[1]  F. Shibasaki,et al.  Involvement of the brain-derived neurotrophic factor/TrkB pathway in neuroprotecive effect of cyclosporin A in forebrain ischemia , 2001, Neuroscience.

[2]  C. Tropé,et al.  Phase I/II trial of the multidrug-resistance modulator valspodar combined with cisplatin and doxorubicin in refractory ovarian cancer. , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  Britt Mellström,et al.  Mechanisms of Ca2+-dependent transcription , 2001, Current Opinion in Neurobiology.

[4]  B. Siesjö,et al.  Cyclosporin A, but not FK506, prevents the downregulation of phosphorylated Akt after transient focal ischemia in the rat , 2001, Brain Research.

[5]  B. Chauffert,et al.  Phase I study of cinchonine, a multidrug resistance reversing agent, combined with the CHVP regimen in relapsed and refractory lymphoproliferative syndromes , 2000, Leukemia.

[6]  E. Salińska,et al.  In vivo brain microdialysis as a tool in studies of neuroprotective effects of cyclosporin A in acute excitotoxicity. , 2000, Acta poloniae pharmaceutica.

[7]  J. Heitman,et al.  Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, in Cryptococcus neoformans , 2000, The EMBO journal.

[8]  Guido Kroemer,et al.  Mitochondrial control of cell death , 2000, Nature Medicine.

[9]  B. Siesjö,et al.  Characteristics of the Calcium‐Triggered Mitochondrial Permeability Transition in Nonsynaptic Brain Mitochondria , 2000, Journal of neurochemistry.

[10]  A. Marks,et al.  Calcineurin Is Downstream of the Inositol 1,4,5-Trisphosphate Receptor in the Apoptotic and Cell Growth Pathways* , 2000, The Journal of Biological Chemistry.

[11]  J. Nazaruk,et al.  Apigenin glycosides from the flowers of Bellis perennis L. , 2000, Acta poloniae pharmaceutica.

[12]  C. Klee,et al.  Calcineurin: from structure to function. , 2000, Current topics in cellular regulation.

[13]  Y. Zou,et al.  Calcineurin plays a critical role in pressure overload-induced cardiac hypertrophy. , 1999, Circulation.

[14]  A. Asai,et al.  High Level Calcineurin Activity Predisposes Neuronal Cells to Apoptosis* , 1999, The Journal of Biological Chemistry.

[15]  T. Wieloch,et al.  Cyclosporin A and its nonimmunosuppressive analogue N‐Me‐Val‐4‐cyclosporin A mitigate glucose/oxygen deprivation‐induced damage to rat cultured hippocampal neurons , 1999, The European journal of neuroscience.

[16]  B. Siesjö,et al.  Posttreatment with the immunosuppressant cyclosporin A in transient focal ischemia , 1999, Brain Research.

[17]  John J. Lemasters,et al.  Mitochondrial Dysfunction in the Pathogenesis of Necrotic and Apoptotic Cell Death , 1999, Journal of bioenergetics and biomembranes.

[18]  M Crompton,et al.  The mitochondrial permeability transition pore and its role in cell death. , 1999, The Biochemical journal.

[19]  T. Wieloch,et al.  Differences in the Activation of the Mitochondrial Permeability Transition Among Brain Regions in the Rat Correlate with Selective Vulnerability , 1999, Journal of neurochemistry.

[20]  G. Sutherland,et al.  Electron Microscopic Evidence against Apoptosis as the Mechanism of Neuronal Death in Global Ischemia , 1999, The Journal of Neuroscience.

[21]  J C Reed,et al.  Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. , 1999, Science.

[22]  Susan S. Taylor,et al.  Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. , 1999, Molecular cell.

[23]  N. Sugano,et al.  Cyclosporin A inhibits H2O2‐induced apoptosis of human fibroblasts , 1999, FEBS letters.

[24]  B. Siesjö,et al.  Role and mechanisms of secondary mitochondrial failure. , 1999, Acta neurochirurgica. Supplement.

[25]  O. Lindvall,et al.  Dynamic changes of brain-derived neurotrophic factor protein levels in the rat forebrain after single and recurring kindling-induced seizures , 1998, Neuroscience.

[26]  Ping-An Li,et al.  Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat , 1998, Brain Research.

[27]  J C Reed,et al.  Mitochondria and apoptosis. , 1998, Science.

[28]  D. Brenner,et al.  The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. , 1998, Biochimica et biophysica acta.

[29]  M. Morioka,et al.  Pathophysiology and treatment of cerebral ischemia. , 1998, The journal of medical investigation : JMI.

[30]  T. Wieloch,et al.  Cyclosporin A, But Not FK 506, Protects Mitochondria and Neurons against Hypoglycemic Damage and Implicates the Mitochondrial Permeability Transition in Cell Death , 1998, The Journal of Neuroscience.

[31]  R. Simon,et al.  Induction of Caspase-3-Like Protease May Mediate Delayed Neuronal Death in the Hippocampus after Transient Cerebral Ischemia , 1998, The Journal of Neuroscience.

[32]  H. Youn,et al.  Cabin 1, a negative regulator for calcineurin signaling in T lymphocytes. , 1998, Immunity.

[33]  S. Kuroda,et al.  Calcium metabolism of focal and penumbral tissues in rats subjected to transient middle cerebral artery occlusion , 1998, Experimental Brain Research.

[34]  A. Thorburn,et al.  Membrane‐targeting sequences on AKAP79 bind phosphatidylinositol‐4,5‐bisphosphate , 1998, The EMBO journal.

[35]  D R Alessi,et al.  Mitogenic Activation, Phosphorylation, and Nuclear Translocation of Protein Kinase Bβ* , 1997, The Journal of Biological Chemistry.

[36]  S. Srinivasula,et al.  Cytochrome c and dATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade , 1997, Cell.

[37]  M. Kennedy,et al.  Determinants of calcineurin binding to model membranes. , 1997, Biochemistry.

[38]  S. R. Datta,et al.  Akt Phosphorylation of BAD Couples Survival Signals to the Cell-Intrinsic Death Machinery , 1997, Cell.

[39]  Xiaodong Wang,et al.  Apaf-1, a Human Protein Homologous to C. elegans CED-4, Participates in Cytochrome c–Dependent Activation of Caspase-3 , 1997, Cell.

[40]  M. Moskowitz,et al.  Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Elizabeth Yang,et al.  Serine Phosphorylation of Death Agonist BAD in Response to Survival Factor Results in Binding to 14-3-3 Not BCL-XL , 1996, Cell.

[42]  S. Orrenius,et al.  Calcineurin and mitochondrial function in glutamate‐induced neuronal cell death , 1996, FEBS letters.

[43]  T. Wieloch,et al.  The immunosuppressant FK506 ameliorates ischaemic damage in the rat brain. , 1996, Acta physiologica Scandinavica.

[44]  S. Aoki,et al.  Three-dimensional brain visualization for metachromatic leukodystrophy , 1996, Brain and Development.

[45]  O. Lindvall,et al.  Cyclosporin A dramatically ameliorates CA1 hippocampal damage following transient forebrain ischaemia in the rat. , 1995, Acta physiologica Scandinavica.

[46]  F. Shibasaki,et al.  Calcineurin functions in Ca(2+)-activated cell death in mammalian cells , 1995, The Journal of cell biology.

[47]  S. Kobayashi,et al.  Journal of Cerebral Blood Flow and Metabolism Spreading Depression Induces Tolerance of Cortical Neurons to Ischemia in Rat Brain , 2022 .

[48]  M. Crompton,et al.  Evidence for the involvement of a membrane-associated cyclosporin-A-binding protein in the Ca(2+)-activated inner membrane pore of heart mitochondria. , 1995, European journal of biochemistry.

[49]  S. Korsmeyer,et al.  Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaces bax and promotes cell death , 1995, Cell.

[50]  L. Langeberg,et al.  Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. , 1995, Science.

[51]  I. Tamai,et al.  In vivo evidence for ATP-dependent and P-glycoprotein-mediated transport of cyclosporin A at the blood-brain barrier. , 1994, Biochemical pharmacology.

[52]  S. Butcher,et al.  Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischaemia , 1994, Nature.

[53]  A. Halestrap,et al.  Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. , 1993, Journal of molecular and cellular cardiology.

[54]  T. Terasaki,et al.  Restricted transport of cyclosporin A across the blood-brain barrier by a multidrug transporter, P-glycoprotein. , 1993, Biochemical pharmacology.

[55]  Stuart L. Schreiber,et al.  Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes , 1991, Cell.

[56]  Yu-chung Chang,et al.  BENEFICIAL EFFECT OF CYCLOSPORINE PRETREATMENT IN CANINE LIVER ISCHEMIA ENZYMATIC AND ELECTRONMICROSCOPIC STUDIES , 1991, Transplantation.

[57]  Hideyuki Yamamoto,et al.  Characterization of polyclonal antibodies to brain protein phosphatase 2A and immunohistochemical localization of the enzyme in rat brain , 1989, Brain Research.

[58]  B. Siesjö,et al.  Accumulation of Calcium and Loss of Potassium in the Hippocampus following Transient Cerebral Ischemia: A Proton Microprobe Study , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[59]  B. Siesjö,et al.  Journal of Cerebral Blood Flow and Metabolism Calcium Accumulation and Neuronal Damage in the Rat Hippocampus following Cerebral Ischemia Operative Procedures , 2022 .

[60]  M. Sameshima The orientation of nucleus, nucleus-associated body and protruding nucleolus in aggregating Dictyostelium discoideum. , 1985, Experimental cell research.

[61]  Takaaki Kirino,et al.  Delayed neuronal death in the gerbil hippocampus following ischemia , 1982, Brain Research.

[62]  Fred Plum,et al.  Temporal profile of neuronal damage in a model of transient forebrain ischemia , 1982, Annals of neurology.