Convergence of Finite Volume Approximations for a Nonlinear Elliptic-Parabolic Problem: A "Continuous" Approach

We study the approximation by finite volume methods of the model parabolic-elliptic problem $b(v)_t={{\rm div \,}} (|Dv|^{p-2} Dv)$ on $(0,T)\times\Omega\subset \R\times\R^d$ with an initial condition and the homogeneous Dirichlet boundary condition. Because of the nonlinearity in the elliptic term, a careful choice of the gradient approximation is needed. We prove the convergence of discrete solutions to the solution of the continuous problem as the discretization step h tends to 0, under the main hypotheses that the approximation of the operator ${{\rm div \,}} (|Dv|p-2 Dv) provided by the finite volume scheme is still monotone and coercive, and that the gradient approximation is exact on the affine functions of $x\in \Om$. An example of such a scheme is given for a class of two-dimensional meshes dual to triangular meshes, in particular for structured rectangular and hexagonal meshes. The proof uses the rewriting of the discrete problem under a "continuous" form. This permits us to directly apply the Alt--Luckhaus variational techniques which are known for the continuous case.

[1]  Thierry Gallouët,et al.  APPROXIMATION BY THE FINITE VOLUME METHOD OF AN ELLIPTIC-PARABOLIC EQUATION ARISING IN ENVIRONMENTAL STUDIES , 2001 .

[2]  J. Carrillo,et al.  Uniqueness of Renormalized Solutions of Degenerate Elliptic-Parabolic Problems , 1999 .

[3]  Boris P. Andreianov,et al.  L'approche «continue » pour une méthode de volumes finis , 2001 .

[4]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[5]  John W. Barrett,et al.  Finite element approximation of the parabolic p -Laplacian , 1994 .

[6]  Robert Eymard,et al.  The finite volume method for Richards equation , 1999 .

[7]  J. Kacur On a solution of degenerate elliptic-parabolic systems in Orlicz-Sobolev spaces I , 1990 .

[8]  Thierry Gallouët,et al.  Finite volumes and nonlinear diffusion equations , 1998 .

[9]  Y. Egorov,et al.  On Spectral Theory of Elliptic Operators , 1996 .

[10]  S. N. Kruzhkov,et al.  Results concerning the nature of the continuity of solutions of parabolic equations and some of their applications , 1969 .

[11]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[12]  J. Lions,et al.  Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder , 1964 .

[13]  Jesús Ildefonso Díaz Díaz,et al.  On a nonlinear parabolic problem arising in some models related to turbulent flows , 1994 .

[14]  Ning Ju,et al.  Numerical Analysis of Parabolic p-Laplacian: Approximation of Trajectories , 2000, SIAM J. Numer. Anal..

[15]  Petra Wittbold,et al.  On mild and weak solutions of elliptic-parabolic problems , 1996, Advances in Differential Equations.

[16]  S. Chow Finite element error estimates for non-linear elliptic equations of monotone type , 1989 .

[17]  THE FINITE VOLUME METHOD FOR AN ELLIPTIC-PARABOLIC EQUATION , 1998 .

[18]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[19]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[20]  Haim Brezis,et al.  Semi-linear second-order elliptic equations in L 1 , 1973 .