Using smart clothing to improve movement

In Orthopedic surgery, our goal is to return people to better levels of musculoskeletal function. There are many areas where there is still room for improvement, including in identifying poor movement patterns and helping people correct those movement patterns. The University of Minnesota Wearable Technology Lab has developed a stitched, textile-based strain sensor that provides a variable resistance response when flexed or stretched. The sensor is fabricated using common industrial sewing techniques, and can be incorporated into regular athletic clothing. Prior work has assessed the ability of this sensor to reliably measure healthy knee flexion with accuracy comparable to standard electrogoniometry when integrated into tight-fitting leggings. Preliminary results have indicated the ability to detect more nuanced movements such as valgus knee flexion through strategic sensor placement. The impacts of this technology are the potential to benefit any person that needs analysis of their movement patterns. In particular, it would be targeting active individuals who are placing their bodies under the greatest stress and therefore are most at risk of injury. The goal would be to identify poor movement patterns and alter the individual's movement prior to, or after, injury. This technology, however, could be easily expanded to deal with people working in manual labor jobs to identify repetitive movement patterns that place them at risk of overuse injury. It could also be applied to patients undergoing rehabilitation following surgeries that require mobility training as part of their rehabilitation.