On decentralized stabilization of interconnected systems

A decentralized control scheme is proposed for stabilization of interconnected systems consisting of arbitrarily connected, linear, time-invariant multivariable subsystems. Sufficient conditions are given for an interconnected system to be stabilized using only local state feedback. The obtained results are illustrated by an example.

[1]  D. Siljak,et al.  Decentrally stabilizable linear and bilinear large-scale systems† , 1977 .

[2]  W. Wonham On pole assignment in multi-input controllable linear systems , 1967 .

[3]  A. Michel Stability and trajectory behavior of composite systems , 1975 .

[4]  H. H. Rosenbrock,et al.  Computer Aided Control System Design , 1974, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[6]  A. Stephen Morse,et al.  Decentralized control of linear multivariable systems , 1976, Autom..

[7]  U. Ozguner,et al.  On the multilevel structure of large-scale composite systems , 1975 .

[8]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[9]  E. Davison Brief paper: The decentralized stabilization and control of a class of unknown non-linear time-varying systems , 1974 .

[10]  M. Aoki On feedback stabilizability of decentralized dynamic systems , 1972 .

[11]  Dragoslav D. Siljak,et al.  Stability of Large-Scale Systems under Structural Perturbations , 1972, IEEE Trans. Syst. Man Cybern..

[12]  E. Davison,et al.  On the stabilization of decentralized control systems , 1973 .

[13]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[14]  B. F. Doolin,et al.  Large scale dynamic systems , 1975 .

[15]  D. Siljak,et al.  Decentralization, Stabilization, and Estimation of Large-Scale Linear Systems , 1976 .

[16]  F. N. Bailey,et al.  The Application of Lyapunov’s Second Method to Interconnected Systems , 1965 .

[17]  D. Luenberger Canonical forms for linear multivariable systems , 1967, IEEE Transactions on Automatic Control.