On the Equivalence of Holographic and Complex Embeddings for Link Prediction

We show the equivalence of two state-of-the-art link prediction/knowledge graph completion methods: Nickel et al's holographic embedding and Trouillon et al.'s complex embedding. We first consider a spectral version of the holographic embedding, exploiting the frequency domain in the Fourier transform for efficient computation. The analysis of the resulting method reveals that it can be viewed as an instance of the complex embedding with certain constraints cast on the initial vectors upon training. Conversely, any complex embedding can be converted to an equivalent holographic embedding.

[1]  Mohammad Al Hasan,et al.  A Survey of Link Prediction in Social Networks , 2011, Social Network Data Analytics.

[2]  Jianfeng Gao,et al.  Embedding Entities and Relations for Learning and Inference in Knowledge Bases , 2014, ICLR.

[3]  John Miller,et al.  Traversing Knowledge Graphs in Vector Space , 2015, EMNLP.

[4]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[5]  Jon Kleinberg,et al.  The link prediction problem for social networks , 2003, CIKM '03.

[6]  Ben Taskar,et al.  Introduction to statistical relational learning , 2007 .

[7]  Fabian M. Suchanek,et al.  Yago: A Core of Semantic Knowledge Unifying WordNet and Wikipedia , 2007 .

[8]  Danqi Chen,et al.  Reasoning With Neural Tensor Networks for Knowledge Base Completion , 2013, NIPS.

[9]  Wei Zhang,et al.  Knowledge vault: a web-scale approach to probabilistic knowledge fusion , 2014, KDD.

[10]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[11]  Jason Weston,et al.  Learning Structured Embeddings of Knowledge Bases , 2011, AAAI.

[12]  Evgeniy Gabrilovich,et al.  A Review of Relational Machine Learning for Knowledge Graphs , 2015, Proceedings of the IEEE.

[13]  Ben Taskar,et al.  Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning) , 2007 .

[14]  Lorenzo Rosasco,et al.  Holographic Embeddings of Knowledge Graphs , 2015, AAAI.

[15]  Guillaume Bouchard,et al.  Decomposing Real Square Matrices via Unitary Diagonalization , 2016 .

[16]  Guillaume Bouchard,et al.  Complex Embeddings for Simple Link Prediction , 2016, ICML.

[17]  Smith,et al.  Mathematics of the Discrete Fourier Transform (DFT) with Audio Applications , 2007 .

[18]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[19]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..