A Simple Scheme for Volume-Preserving Motion by Mean Curvature

In this article, we present a diffusion-generated approach for evolving volume-preserving motion by mean curvature. Our algorithm alternately diffuses and sharpens characteristic functions to produce a normal velocity which equals the mean curvature minus the average mean curvature. This simple algorithm naturally treats topological mergings and breakings and can be made very fast even when the volume constraint is enforced to double precision (or more). Two dimensional numerical studies are provided to demonstrate the convergence of the method for smooth and nonsmooth problems.

[1]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[2]  J. Rubinstein,et al.  Nonlocal reaction−diffusion equations and nucleation , 1992 .

[3]  J. Zimba,et al.  The standard double soap bubble in R2 uniquely minimizes perimeter , 1993 .

[4]  L. Evans Convergence of an algorithm for mean curvature motion , 1993 .

[5]  S. Osher,et al.  Motion of multiple junctions: a level set approach , 1994 .

[6]  David L. Chopp,et al.  Computation of Self-Similar Solutions for Mean Curvature Flow , 1994, Exp. Math..

[7]  G. Barles,et al.  A Simple Proof of Convergence for an Approximation Scheme for Computing Motions by Mean Curvature , 1995 .

[8]  L. Bronsard,et al.  A numerical method for tracking curve networks moving with curvature motion , 1995 .

[9]  J. Hass,et al.  The double bubble conjecture , 1995 .

[10]  Maurizio Paolini,et al.  A Dynamic Mesh Algorithm for Curvature Dependent Evolving Interfaces , 1996 .

[11]  L. Bronsard,et al.  Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation , 1997 .

[12]  Steven J. Ruuth Efficient Algorithms for Diffusion-Generated Motion by Mean Curvature , 1998 .

[13]  S. Osher,et al.  Capturing the Behavior of Bubbles and Drops Using the Variational Level Set Approach , 1998 .

[14]  Steven J. Ruuth A Diffusion-Generated Approach to Multiphase Motion , 1998 .

[15]  Steven J. Ruuth,et al.  Convolution-Generated Motion as a Link between Cellular Automata and Continuum Pattern Dynamics , 1999 .

[16]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[17]  Steven J. Ruuth,et al.  Convolution-Generated Motion and Generalized Huygens' Principles for Interface Motion , 2000, SIAM J. Appl. Math..

[18]  Steven J. Ruuth,et al.  Convolution—thresholding methods for interface motion , 2001 .