Modeling longitudinal spin fluctuations in chiral magnets

We investigate the effect of evolution of energy of longitudinal spin fluctuations on the helimagnetic transition and specific heat in a Heisenberg magnet with the Dzyaloshinskii–Moriya interaction that may arise in a result of applied pressure. Using the classical Monte Carlo calculations for the spin-lattice Hamiltonian accounting for variable spin amplitudes we find that the helical phase transition is pretty robust against the longitudinal spin fluctuations. At the same time the amplitude of the fluctuation hump seen in the specific heat dependence at and its position are significantly affected. Depending on the mode of evolution the hump either shifts to lower or higher temperatures increasing its amplitude with the amplitude of the fluctuations.

[1]  Thomas Wolf,et al.  Evolution of helimagnetic correlations in Mn1−xFexSi with doping: A small-angle neutron scattering study , 2018, Physical Review B.

[2]  S. M. Stishov,et al.  Influence of longitudinal spin fluctuations on the phase transition features in chiral magnets , 2018 .

[3]  S. M. Stishov,et al.  Helical itinerant MnSi magnet: magnetic phase transition , 2017 .

[4]  L. Sandratskii Insight into the Dzyaloshinskii-Moriya interaction through first-principles study of chiral magnetic structures , 2017 .

[5]  S. M. Stishov,et al.  Monte Carlo modeling the phase diagram of magnets with the Dzyaloshinskii - Moriya interaction , 2017, 1705.07776.

[6]  S. Blügel,et al.  Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii-Moriya interactions , 2017, Nature Communications.

[7]  S. M. Stishov,et al.  Phase transitions in chiral magnets from Monte Carlo simulations , 2017, 1702.04178.

[8]  Y. Tokura,et al.  Universality of the helimagnetic transition in cubic chiral magnets: Small angle neutron scattering and neutron spin echo spectroscopy studies of FeCoSi , 2017, 1701.05448.

[9]  S. Grigoriev,et al.  Spin-wave dynamics in the helimagnet FeGe studied by small-angle neutron scattering , 2016, 1609.08358.

[10]  T. Lograsso,et al.  Magnetic Fluctuations, Precursor Phenomena, and Phase Transition in MnSi under a Magnetic Field. , 2016, Physical review letters.

[11]  M. Baenitz,et al.  Scaling study and thermodynamic properties of the cubic helimagnet FeGe , 2016, 1610.00862.

[12]  M. Mostovoy,et al.  Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet , 2015, Nature Communications.

[13]  Jeroen van den Brink,et al.  The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3 , 2014, Nature Communications.

[14]  V. Sidorov,et al.  Comparative study of helimagnets MnSi andCu2OSeO3at high pressures , 2013, 1310.3988.

[15]  L. Fritz,et al.  Skyrmion lattice phase in three-dimensional chiral magnets from Monte Carlo simulations , 2013, 1304.6580.

[16]  M. Schmidt,et al.  Thermodynamic investigations in the precursor region of FeGe , 2012, 1208.5646.

[17]  C. Pfleiderer,et al.  Fluctuation-induced first-order phase transition in Dzyaloshinskii-Moriya helimagnets , 2012, 1205.4780.

[18]  M. Baenitz,et al.  Complex chiral modulations in FeGe close to magnetic ordering. , 2011, Physical review letters.

[19]  S. Dudarev,et al.  Longitudinal magnetic fluctuations in Langevin spin dynamics , 2012 .

[20]  C. Pfleiderer,et al.  Magnetic phase diagram of MnSi inferred from magnetization and ac susceptibility , 2012, 1206.5774.

[21]  P. Derlet Landau-Heisenberg Hamiltonian model for FeRh , 2012 .

[22]  M. Baenitz,et al.  Confinement of chiral magnetic modulations in the precursor region of FeGe , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  S. M. Stishov,et al.  Itinerant helimagnet MnSi , 2011 .

[24]  M. Schmidt,et al.  Precursor phenomena at the magnetic ordering of the cubic helimagnet FeGe. , 2011, Physical review letters.

[25]  H. von Löhneysen,et al.  Magnetic blue phase in the chiral itinerant magnet MnSi. , 2011, Physical review letters.

[26]  U. Rößler,et al.  Chiral Skyrmionic matter in non-centrosymmetric magnets , 2010, 1009.4849.

[27]  V. Dyadkin,et al.  Crossover behavior of critical helix fluctuations in MnSi , 2010 .

[28]  A. N. Bogdanov,et al.  Skyrmionic textures in chiral magnets , 2009, 0907.3651.

[29]  S. Yi,et al.  Skyrmions and anomalous Hall effect in a Dzyaloshinskii-Moriya spiral magnet , 2009, 0903.3272.

[30]  P M Bentley,et al.  Chiral paramagnetic skyrmion-like phase in MnSi. , 2009, Physical review letters.

[31]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[32]  S. M. Stishov,et al.  Ultrasonic studies of the magnetic phase transition in MnSi , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  A. L. Wysocki,et al.  Thermodynamics of itinerant magnets in a classical spin-fluctuation model , 2008, 0810.5084.

[34]  T. Lograsso,et al.  Heat capacity and thermal expansion of the itinerant helimagnet MnSi , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  S. Isakov,et al.  Fate of partial order on trillium and distorted windmill lattices , 2008, 0804.0133.

[36]  B. Johansson,et al.  Temperature-induced longitudinal spin fluctuations in Fe and Ni , 2007 .

[37]  J. Kübler Ab initio estimates of the Curie temperature for magnetic compounds , 2006 .

[38]  S. V. Grigoriev,et al.  Critical fluctuations in MnSi nearTC: A polarized neutron scattering study , 2005 .

[39]  A. Ruban,et al.  An ab initio effective Hamiltonian for magnetism including longitudinal spin fluctuations , 2005, cond-mat/0502291.

[40]  L. Pintschovius,et al.  Partial order in the non-Fermi-liquid phase of MnSi , 2004, Nature.

[41]  C. Pfleiderer,et al.  Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets , 2001, Nature.

[42]  J. Kübler,et al.  Exchange-coupled spin-fluctuation theory: calculation of magneto-elastic properties , 1997 .

[43]  Uhl,et al.  Exchange-Coupled Spin-Fluctuation Theory: Application to Fe, Co, and Ni. , 1996, Physical review letters.

[44]  H. Capel Phase transitions in spin-one Ising systems , 1966 .

[45]  H. Capel On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field , 1966 .

[46]  M. Blume THEORY OF THE FIRST-ORDER MAGNETIC PHASE CHANGE IN UO$sub 2$ , 1966 .