Interclonal gradient of virulence in the Pseudomonas aeruginosa pangenome from disease and environment.

The population genomics of Pseudomonas aeruginosa was analysed by genome sequencing of representative strains of the 15 most frequent clonal complexes in the P. aeruginosa population and of the five most common clones from the environment of which so far no isolate from a human infection has been detected. Gene annotation identified 5892-7187 open reading frame (ORFs; median 6381 ORFs) in the 20 6.4-7.4 Mbp large genomes. The P. aeruginosa pangenome consists of a conserved core of at least 4000 genes, a combinatorial accessory genome of a further 10 000 genes and 30 000 or more rare genes that are present in only a few strains or clonal complexes. Whole genome comparisons of single nucleotide polymorphism synteny indicated unrestricted gene flow between clonal complexes by recombination. Using standardized acute lettuce, Galleria mellonella and murine airway infection models the full spectrum of possible host responses to P. aeruginosa was observed with the 20 strains ranging from unimpaired health following infection to 100% lethality. Genome comparisons indicate that the differential genetic repertoire of clones maintains a habitat-independent gradient of virulence in the P. aeruginosa population.

[1]  D. Newman,et al.  Extraction and measurement of NAD(P)(+) and NAD(P)H. , 2014, Methods in molecular biology.

[2]  Jens Stoye,et al.  ReadXplorer—visualization and analysis of mapped sequences , 2014, Bioinform..

[3]  W. Quax,et al.  Assessing Pseudomonas virulence with nonmammalian host: Galleria mellonella. , 2014, Methods in molecular biology.

[4]  N. Mushtaq,et al.  Differential potentiation of the virulence of the Pseudomonas aeruginosa cystic fibrosis liverpool epidemic strain by oral commensal Streptococci. , 2014, The Journal of infectious diseases.

[5]  S. Ye,et al.  Pseudomonas aeruginosa Cif Protein Enhances the Ubiquitination and Proteasomal Degradation of the Transporter Associated with Antigen Processing (TAP) and Reduces Major Histocompatibility Complex (MHC) Class I Antigen Presentation* , 2013, The Journal of Biological Chemistry.

[6]  G. O’Toole,et al.  Pouring Salt on a Wound: Pseudomonas aeruginosa Virulence Factors Alter Na+ and Cl− Flux in the Lung , 2013, Journal of bacteriology.

[7]  Mathias Müsken,et al.  The peptide chain release factor methyltransferase PrmC is essential for pathogenicity and environmental adaptation of Pseudomonas aeruginosa PA14. , 2013, Environmental microbiology.

[8]  Alan R. Davidson,et al.  Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system , 2012, Nature.

[9]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[10]  J. Klockgether,et al.  Intraclonal genome diversity of Pseudomonas aeruginosa clones CHA and TB , 2013, BMC Genomics.

[11]  B. Tümmler,et al.  Molecular Epidemiology of Chronic Pseudomonas aeruginosa Airway Infections in Cystic Fibrosis , 2012, PloS one.

[12]  Eugene V. Koonin,et al.  Evolution of microbes and viruses: a paradigm shift in evolutionary biology? , 2012, Front. Cell. Inf. Microbio..

[13]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[14]  Max Schobert,et al.  Pseudomonas aeruginosa population structure revisited under environmental focus: impact of water quality and phage pressure. , 2010, Environmental microbiology.

[15]  Mariusz Nowak,et al.  In-Vivo Expression Profiling of Pseudomonas aeruginosa Infections Reveals Niche-Specific and Strain-Independent Transcriptional Programs , 2011, PloS one.

[16]  B. Tümmler,et al.  Lung function and inflammation during murine Pseudomonas aeruginosa airway infection. , 2011, Immunobiology.

[17]  Martin Goodson,et al.  Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. , 2011, Genome research.

[18]  Jens Stoye,et al.  Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming , 2011, Bioinform..

[19]  Lutz Wiehlmann,et al.  Pseudomonas aeruginosa Genomic Structure and Diversity , 2011, Front. Microbio..

[20]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[21]  Raymond Lo,et al.  Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes , 2010, Nucleic Acids Res..

[22]  T. Murphy,et al.  Differential adaptation of microbial pathogens to airways of patients with cystic fibrosis and chronic obstructive pulmonary disease. , 2011, FEMS microbiology reviews.

[23]  Jian-Min Zhou,et al.  Plant immunity triggered by microbial molecular signatures. , 2010, Molecular plant.

[24]  F. Stanke,et al.  Head-Out Spirometry Accurately Monitors the Course of Pseudomonas aeruginosa Lung Infection in Mice , 2010, Respiration.

[25]  C. Reimmann,et al.  Identification of the Biosynthetic Gene Cluster for the Pseudomonas aeruginosa Antimetabolite l-2-Amino-4-Methoxy-trans-3-Butenoic Acid , 2010, Journal of bacteriology.

[26]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[27]  Jens Stoye,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2009 .

[28]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[29]  Bruno Pot,et al.  Pseudomonas aeruginosa Population Structure Revisited , 2009, PloS one.

[30]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[31]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[32]  R. Hancock,et al.  The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. , 2009, Microbiology.

[33]  L. Rahme,et al.  Modeling Pseudomonas aeruginosa pathogenesis in plant hosts , 2009, Nature Protocols.

[34]  Julian Parkhill,et al.  Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. , 2008, Genome research.

[35]  L. Eberl,et al.  Multiple roles of Pseudomonas aeruginosa TBCF10839 PilY1 in motility, transport and infection , 2008, Molecular microbiology.

[36]  Alexander Goesmann,et al.  EDGAR: A software framework for the comparative analysis of prokaryotic genomes , 2009, BMC Bioinformatics.

[37]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[38]  B. Birren,et al.  Dynamics of Pseudomonas aeruginosa genome evolution , 2008, Proceedings of the National Academy of Sciences.

[39]  Christian Weinel,et al.  Population structure of Pseudomonas aeruginosa , 2007, Proceedings of the National Academy of Sciences.

[40]  Shouguang Jin,et al.  Regulatory Role of PopN and Its Interacting Partners in Type III Secretion of Pseudomonas aeruginosa , 2007, Journal of bacteriology.

[41]  J. Klockgether,et al.  Diversity of the Abundant pKLC102/PAGI-2 Family of Genomic Islands in Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[42]  Li Li,et al.  Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial , 2006, Genome Biology.

[43]  M. Maiden Multilocus sequence typing of bacteria. , 2006, Annual review of microbiology.

[44]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[45]  U. Römling,et al.  Worldwide distribution of Pseudomonas aeruginosa clone C strains in the aquatic environment and cystic fibrosis patients. , 2005, Environmental microbiology.

[46]  B. Tümmler,et al.  Murine pulmonary infection with Listeria monocytogenes: differential susceptibility of BALB/c, C57BL/6 and DBA/2 mice. , 2005, Microbes and infection.

[47]  S. Diggle,et al.  The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. , 2005, Microbiology.

[48]  Yehuda Koren,et al.  Graph Drawing by Stress Majorization , 2004, GD.

[49]  W. Hanage,et al.  eBURST: Inferring Patterns of Evolutionary Descent among Clusters of Related Bacterial Genotypes from Multilocus Sequence Typing Data , 2004, Journal of bacteriology.

[50]  Cathy H. Wu,et al.  Protein sequence databases. , 2004, Current opinion in chemical biology.

[51]  N. Moran,et al.  From Gene Trees to Organismal Phylogeny in Prokaryotes:The Case of the γ-Proteobacteria , 2003, PLoS biology.

[52]  R. Giegerich,et al.  GenDB--an open source genome annotation system for prokaryote genomes. , 2003, Nucleic acids research.

[53]  M. Hamilton,et al.  How to optimize the drop plate method for enumerating bacteria. , 2001, Journal of microbiological methods.

[54]  Emden R. Gansner,et al.  An open graph visualization system and its applications to software engineering , 2000, Softw. Pract. Exp..

[55]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[56]  F. Ausubel,et al.  Common virulence factors for bacterial pathogenicity in plants and animals. , 1995, Science.

[57]  M. Gillbricht Erna Weber: Grundriß der Biologischen Statistik. Mit 110 Abb. 6. Auflage. Jena: Gustav VEB Fischer Verlag 1967. 674 S. M 45,— , 1970 .

[58]  E. Weber Grundriss der biologischen Statistik : Anwendungen der mathematischen Statistik in Naturwissenschaft und Technik , 1967 .