Topological transitions in superconductor nanomembranes under a strong transport current

[1]  V. Fomin,et al.  Simulation of dynamics of the order parameter in superconducting nanostructured materials: Effect of the magnetic field renormalization , 2020 .

[2]  D. Mailly,et al.  Three-Dimensional Superconducting Nanohelices Grown by He+-Focused-Ion-Beam Direct Writing , 2019, Nano letters.

[3]  D. Vodolazov Flux-flow instability in a strongly disordered superconducting strip with an edge barrier for vortex entry , 2019, Superconductor Science and Technology.

[4]  J. Sesé,et al.  Long-range vortex transfer in superconducting nanowires , 2019, Scientific Reports.

[5]  O. Schmidt,et al.  Microwave Radiation Detection with an Ultrathin Free-Standing Superconducting Niobium Nanohelix. , 2019, ACS nano.

[6]  O. Schmidt,et al.  Voltage Induced by Superconducting Vortices in Open Nanostructured Microtubes , 2018, physica status solidi (RRL) - Rapid Research Letters.

[7]  Y. Iwasa,et al.  Quantum phase transitions in highly crystalline two-dimensional superconductors , 2018, Nature Communications.

[8]  M. Huth,et al.  Focused electron beam induced deposition meets materials science , 2017, 1709.05835.

[9]  M. Inguscio,et al.  Exploring quantum phase slips in 1D bosonic systems , 2017, 1707.09385.

[10]  M. Huber,et al.  Imaging of super-fast dynamics and flow instabilities of superconducting vortices , 2017, Nature Communications.

[11]  Jinyang Xi,et al.  Intrinsic Charge Transport in Stanene: Roles of Bucklings and Electron–Phonon Couplings , 2017, 1705.01816.

[12]  M. Inguscio,et al.  Velocity-dependent quantum phase slips in 1D atomic superfluids , 2016, Scientific Reports.

[13]  S. Wessel,et al.  Evidence of a field-induced Berezinskii–Kosterlitz–Thouless scenario in a two-dimensional spin–dimer system , 2014, Nature Communications.

[14]  O. Schmidt,et al.  Tunable generation of correlated vortices in open superconductor tubes. , 2012, Nano letters.

[15]  D. R. Penn,et al.  Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range , 2011 .

[16]  H. Alloul Introduction to Superconductivity , 2011 .

[17]  V. L. BEREZINSKI'f DESTRUCTION OF LONG-RANGE ORDER IN ONE-DIMENSIONAL AND TWO-DIMENSIONAL SYSTEMS HAVING A CONTINUOUS SYMMETRY GROUP I . CLASSICAL , 2011 .

[18]  F. Peeters,et al.  Kinematic vortex-antivortex lines in strongly driven superconducting stripes , 2009 .

[19]  D. McKay,et al.  Phase-slip-induced dissipation in an atomic Bose–Hubbard system , 2007, Nature.

[20]  V. Mitin,et al.  One-dimensional resistive states in quasi-two-dimensional superconductors : Experiment and theory , 2007, 0709.0709.

[21]  J. Bird,et al.  On the Nature of Resistive Transition in Disordered Superconducting Nanowires , 2007, IEEE Transactions on Applied Superconductivity.

[22]  Bo Chen,et al.  Two-dimensional vortices in superconductors , 2007, Nature Physics.

[23]  Baptiste Battelier,et al.  Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas , 2006, Nature.

[24]  A V Ustinov,et al.  Josephson behavior of phase-slip lines in wide superconducting strips. , 2003, Physical review letters.

[25]  N. B. Kopnin Theory of Nonequilibrium Superconductivity , 2001 .

[26]  A. Andronov,et al.  Kinematic vortices and phase slip lines in the dynamics of the resistive state of narrow superconductive thin film channels , 1993 .

[27]  Enomoto,et al.  Effects of the surface boundary on the magnetization process in type-II superconductors. , 1993, Physical review. B, Condensed matter.

[28]  R. Tidecks Current-Induced Nonequilibrium Phenomena in Quasi-One-Dimensional Superconductors , 1990 .

[29]  Giordano,et al.  Evidence for macroscopic quantum tunneling in one-dimensional superconductors. , 1988, Physical review letters.

[30]  David R. Nelson,et al.  Resistive transition in superconducting films , 1979 .

[31]  M. Beasley,et al.  Phase-slip centers and nonequilibrium processes in superconducting tin microbridges , 1974 .

[32]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[33]  A. V. Tulub,et al.  Intrinsic resistive transition in narrow superconducting channels , 1973 .

[34]  B. Halperin,et al.  Time scale of intrinsic resistive fluctuations in thin superconducting wires , 1970 .

[35]  V. Berezinsky,et al.  Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems , 1970 .

[36]  J. Bell,et al.  Experiment and Theory , 1968 .