A survey of non-conservative formulation for convection-diffusion and hyperbolic problems

[1]  Y. Lv Development of a nonconservative discontinuous Galerkin formulation for simulations of unsteady and turbulent flows , 2020, International Journal for Numerical Methods in Fluids.

[2]  Carlos Parés Madroñal,et al.  Well-balanced high-order finite difference methods for systems of balance laws , 2020, J. Comput. Phys..

[3]  Aditya K. Pandare,et al.  A Discontinuous Galerkin method for Non-Equilibrium Multi-Material Flows on Unstructured Grids , 2020 .

[4]  Alexander Kurganov,et al.  Path-conservative central-upwind schemes for nonconservative hyperbolic systems , 2019, ESAIM: Mathematical Modelling and Numerical Analysis.

[5]  Christian Klingenberg,et al.  High order well-balanced finite volume methods for multi-dimensional systems of hyperbolic balance laws , 2019, 1903.05154.

[6]  Frédéric Coquel,et al.  A new comment on the computation of non-conservative products using Roe-type path conservative schemes , 2017, J. Comput. Phys..

[7]  Carlos Pantano,et al.  A Roe-like numerical method for weakly hyperbolic systems of equations in conservation and non-conservation form , 2016, J. Comput. Phys..

[8]  Manuel Jesús Castro Díaz,et al.  Central Schemes for Nonconservative Hyperbolic Systems , 2012, SIAM J. Sci. Comput..

[9]  Michael Dumbser,et al.  A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems , 2011, J. Sci. Comput..

[10]  Carlos Parés Madroñal,et al.  On the Convergence and Well-Balanced Property of Path-Conservative Numerical Schemes for Systems of Balance Laws , 2011, J. Sci. Comput..

[11]  José Miguel Mantas,et al.  Two-Dimensional Compact Third-Order Polynomial Reconstructions. Solving Nonconservative Hyperbolic Systems Using GPUs , 2011, J. Sci. Comput..

[12]  Rémi Abgrall,et al.  A comment on the computation of non-conservative products , 2010, J. Comput. Phys..

[13]  Manuel Jesús Castro Díaz,et al.  Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes , 2008, J. Comput. Phys..

[14]  Manuel Jesús Castro Díaz,et al.  Well-Balanced High Order Extensions of Godunov's Method for Semilinear Balance Laws , 2008, SIAM J. Numer. Anal..

[15]  Jostein R. Natvig,et al.  Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows , 2006, J. Comput. Phys..

[16]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[17]  Carlos Parés,et al.  On the well-balance property of Roe?s method for nonconservative hyperbolic systems , 2004 .

[18]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[19]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[20]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[21]  Arnaud Heibig,et al.  Nonconservative products in bounded variation functions , 1992 .

[22]  J. Colombeau,et al.  Multiplications of distributions in elasticity and hydrodynamics , 1988 .

[23]  P. Lax,et al.  Systems of conservation laws , 1960 .

[24]  Carlos Parés,et al.  A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport , 2013 .

[25]  T. Morales de Luna,et al.  On a shallow water model for the simulation of turbidity currents , 2009 .

[26]  With Invariant Submanifolds,et al.  Systems of Conservation Laws , 2009 .

[27]  Carlos Parés,et al.  Godunov method for nonconservative hyperbolic systems , 2007 .

[28]  Carlos Parés Madroñal,et al.  Numerical methods for nonconservative hyperbolic systems: a theoretical framework , 2006, SIAM J. Numer. Anal..

[29]  Tai-Ping Liu,et al.  Existence theory for nonlinear hyperbolic systems in nonconservative form , 1993 .

[30]  P. Floch Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form , 1988 .

[31]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[32]  Siddhartha Mishra,et al.  Esaim: Mathematical Modelling and Numerical Analysis Accurate Numerical Discretizations of Non-conservative Hyperbolic Systems , 2022 .