No trace of a single-degenerate companion in late spectra of supernovae 2011fe and 2014J

Aims. This study aims at constraining the origin of the nearby Type Ia supernovae (SNe), 2011fe and 2014J. The two most favoured scenarios for triggering the explosion of the white dwarf supernova progenitor is either mass loss from a non-degenerate companion or merger with another white dwarf. In the former, there could be a significant amount of leftover material from the companion at the centre of the supernova. Detecting such material would therefore favour the single-degenerate scenario. Methods. The left-over material from a possible non-degenerate companion can reveal itself after about one year, and in this study such material was searched for in the spectra of SN 2011fe (at 294 days after the explosion) using the Large Binocular Telescope and for SN 2014J using the Nordic Optical Telescope (315 days past explosion). The observations were interpreted using numerical models simulating the expected line emission from ablated material from the companion star. The spectral lines sought for are H , [O I] 6300, and [Ca II] 7291,7324, and the expected width of these lines is 1000 km s 1 , which in the case of the [Ca II] lines blend to a broader feature. Results. No signs of H , [O I] 6300, or [Ca II] 7291, 7324 could be traced for in any of the two supernovae. When systematic uncertainties are included, the limits on hydrogen-rich ablated gas are 0:003 M in SN 2011fe and 0:0085 M in SN 2014J, where the limit for SN 2014J is the second lowest ever, and the limit for SN 2011fe is a revision of a previous limit. Limits are also put on heliumrich ablated gas, and here limits from [O I] 6300 provide the upper mass limits 0:002 M and 0:005 M for SNe 2011fe and 2014J, respectively. These numbers are used in conjunction with other data to argue that these supernovae can stem from double-degenerate systems or from single-degenerate systems with a spun-up/spun-down super-Chandrasekhar white dwarf. For SN 2011fe, other types of hydrogen-rich donors can very likely be ruled out, whereas a main-sequence donor system with large intrinsic separation is still possible for SN 2014J. Helium-rich donor systems cannot be ruled out for any of the two supernovae, but the expected short delay time for such progenitors makes this possibility less likely, especially for SN 2011fe. Published data for SNe 1998bu, 2000cx, 2001el, 2005am, and 2005cf are used to constrain their origin. We emphasise that the results of this study depend on the sought-after lines emerging unattenuated from the central regions of the nebula. Detailed radiative transfer calculations with longer line lists than are presently used are needed to confirm that this is, in fact, true. Finally, the broad lines of SNe 2011fe and 2014J are discussed, and it is found that the [Ni II] 7378 emission is redshifted by +1300 km s 1 , as opposed to the known blueshift of 1100 km s 1 for SN 2011fe. [Fe II] 7155 is also redshifted in SN 2014J. SN 2014J belongs to a minority of SNe Ia that both have a nebular redshift of [Fe II] 7155 and [Ni II] 7378, and a slow decline of the Si II 6355 absorption trough just after B-band maximum.

[1]  J. Pepper,et al.  CONSTRAINTS ON THE ORIGIN OF THE FIRST LIGHT FROM SN 2014J , 2015 .

[2]  J. Lyman,et al.  On the environments of Type Ia supernovae within host galaxies , 2014, 1412.6315.

[3]  W. E. Kerzendorf,et al.  Spectroscopy of the Type Ia supernova 2011fe past 1000 d , 2014, 1411.7599.

[4]  Wei Zheng,et al.  Twins for life? A comparative analysis of the Type Ia supernovae 2011fe and 2011by , 2014, 1408.2651.

[5]  N. Soker,et al.  Constraining the double-degenerate scenario for Type Ia supernovae from merger ejected matter , 2014, 1408.1375.

[6]  B. J. Fulton,et al.  TIME-VARYING POTASSIUM IN HIGH-RESOLUTION SPECTRA OF THE TYPE IA SUPERNOVA 2014J , 2014, 1412.0653.

[7]  J. Prieto,et al.  Discovery and Observations of the Unusually Luminous Type-Defying II-P/II-L Supernova ASASSN-13co , 2014, 1411.3322.

[8]  A.Goobar,et al.  Constraints on the origin of the first light from SN2014J , 2014, 1410.1363.

[9]  K. Maguire,et al.  Photometric and spectroscopic observations, and abundance tomography modelling of the type Ia supernova SN 2014J located in M82 , 2014, 1409.7066.

[10]  T. Shigeyama,et al.  SIGNATURES OF A COMPANION STAR IN TYPE IA SUPERNOVAE , 2014, 1408.4211.

[11]  J. Greiner,et al.  Early 56Ni decay gamma rays from SN2014J suggest an unusual explosion , 2014, Science.

[12]  R. Itoh,et al.  OPTICAL AND NEAR-INFRARED POLARIMETRY OF HIGHLY REDDENED Type Ia SUPERNOVA 2014J: PECULIAR PROPERTIES OF DUST IN M82 , 2014, 1407.0452.

[13]  Z. Paragi,et al.  CONSTRAINTS ON THE PROGENITOR SYSTEM AND THE ENVIRONS OF SN 2014J FROM DEEP RADIO OBSERVATIONS , 2014, 1405.4702.

[14]  J. Bochanski,et al.  EARLY OBSERVATIONS AND ANALYSIS OF THE TYPE Ia SN 2014J IN M82 , 2014, 1405.3970.

[15]  W. Hillebrandt,et al.  Extensive HST ultraviolet spectra and multiwavelength observations of SN 2014J in M82 indicate reddening and circumstellar scattering by typical dust , 2014, 1405.3677.

[16]  R. Kirshner,et al.  NO X-RAYS FROM THE VERY NEARBY TYPE Ia SN 2014J: CONSTRAINTS ON ITS ENVIRONMENT , 2014, 1405.1488.

[17]  P. E. Nugent,et al.  THE PECULIAR EXTINCTION LAW OF SN 2014J MEASURED WITH THE HUBBLE SPACE TELESCOPE , 2014, 1404.2595.

[18]  M. Chandler Companion interview: Marge Chandler , 2014 .

[19]  S. B. Cenko,et al.  THE RISE OF SN 2014J IN THE NEARBY GALAXY M82 , 2014 .

[20]  Ori D. Fox,et al.  CONSTRAINTS ON THE PROGENITOR SYSTEM OF THE TYPE Ia SUPERNOVA 2014J FROM PRE-EXPLOSION HUBBLE SPACE TELESCOPE IMAGING , 2014, 1403.4250.

[21]  E. Ofek,et al.  The rise of SN2014J in the nearby galaxy M82 , 2014, 1402.0849.

[22]  Wei Zheng,et al.  ESTIMATING THE FIRST-LIGHT TIME OF THE TYPE IA SUPERNOVA 2014J IN M82 , 2014, 1401.7968.

[23]  Filippo Mannucci,et al.  Observational Clues to the Progenitors of Type Ia Supernovae , 2013, 1312.0628.

[24]  R. Foley,et al.  Multi-epoch high-spectral-resolution observations of neutral sodium in 14 Type Ia supernovae , 2013, 1311.3645.

[25]  M. Fink,et al.  PREDICTING THE AMOUNT OF HYDROGEN STRIPPED BY THE SN EXPLOSION FOR SN 2002cx-LIKE SNe Ia , 2013, 1310.3884.

[26]  W. Hillebrandt,et al.  THE IMPACT OF TYPE Ia SUPERNOVA EXPLOSIONS ON HELIUM COMPANIONS IN THE CHANDRASEKHAR-MASS EXPLOSION SCENARIO , 2013, 1307.5579.

[27]  J. Sollerman,et al.  Hydrogen and helium in the spectra of Type Ia supernovae , 2013, 1307.4099.

[28]  William H. Lee,et al.  SN 2000cx and SN 2013bh: Extremely Rare, Nearly Twin Type Ia Supernovae , 2013, 1307.3555.

[29]  P. Garnavich,et al.  THE MID-INFRARED AND OPTICAL DECAY OF SN 2011fe , 2013, 1302.5421.

[30]  R. Foley,et al.  CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE , 2013, 1302.2916.

[31]  U. Munari,et al.  BVRI lightcurves of supernovae SN 2011fe in M101, SN 2012aw in M95, and SN 2012cg in NGC 4424 , 2012, 1209.4692.

[32]  G. Vaucouleurs,et al.  Third Reference Catalogue of Bright Galaxies , 2012 .

[33]  P. Garnavich,et al.  NO STRIPPED HYDROGEN IN THE NEBULAR SPECTRA OF NEARBY TYPE Ia SUPERNOVA 2011fe , 2012, 1210.3027.

[34]  W. Hillebrandt,et al.  Three-dimensional simulations of the interaction between type Ia supernova ejecta and their main sequence companions , 2012, 1209.4458.

[35]  E. Gall,et al.  Interpreting the near-infrared spectra of the 'golden standard' Type Ia supernova 2005cf , 2012, 1208.5949.

[36]  M. Sullivan,et al.  PTF 11kx: A Type Ia Supernova with a Symbiotic Nova Progenitor , 2012, Science.

[37]  E. Ofek,et al.  ANALYSIS OF THE EARLY-TIME OPTICAL SPECTRA OF SN 2011fe IN M101 , 2012, 1205.6011.

[38]  S. Immler,et al.  SWIFT X-RAY UPPER LIMITS ON TYPE Ia SUPERNOVA ENVIRONMENTS , 2012, 1203.6629.

[39]  P. Ricker,et al.  IMPACT OF TYPE Ia SUPERNOVA EJECTA ON BINARY COMPANIONS IN THE SINGLE-DEGENERATE SCENARIO , 2012, 1203.1932.

[40]  N. Gehrels,et al.  INVERSE COMPTON X-RAY EMISSION FROM SUPERNOVAE WITH COMPACT PROGENITORS: APPLICATION TO SN2011fe , 2012, 1202.0741.

[41]  R. Margutti,et al.  EVLA OBSERVATIONS CONSTRAIN THE ENVIRONMENT AND PROGENITOR SYSTEM OF Type Ia SUPERNOVA 2011fe , 2012, 1201.0994.

[42]  P. Brown,et al.  A SWIFT LOOK AT SN 2011fe: THE EARLIEST ULTRAVIOLET OBSERVATIONS OF A TYPE Ia SUPERNOVA , 2011, 1110.2538.

[43]  Peter E. Nugent,et al.  EARLY RADIO AND X-RAY OBSERVATIONS OF THE YOUNGEST NEARBY TYPE Ia SUPERNOVA PTF 11kly (SN 2011fe) , 2011, 1109.2912.

[44]  Nathaniel R. Butler,et al.  Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe , 2011, Nature.

[45]  Nathaniel R. Butler,et al.  A COMPACT DEGENERATE PRIMARY-STAR PROGENITOR OF SN 2011fe , 2011, 1111.0966.

[46]  Federica B. Bianco,et al.  Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.

[47]  J. Truran,et al.  EVIDENCE FOR TYPE Ia SUPERNOVA DIVERSITY FROM ULTRAVIOLET OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 2011, 1110.5809.

[48]  K. Nomoto,et al.  A SINGLE DEGENERATE PROGENITOR MODEL FOR TYPE Ia SUPERNOVAE HIGHLY EXCEEDING THE CHANDRASEKHAR MASS LIMIT , 2011, 1106.3510.

[49]  Bryan M. Gaensler,et al.  VISIBILITY STACKING IN THE QUEST FOR TYPE Ia SUPERNOVA RADIO EMISSION , 2011, 1105.6188.

[50]  S. Warren,et al.  THE M81 GROUP DWARF IRREGULAR GALAXY DDO 165. I. HIGH-VELOCITY NEUTRAL GAS IN A POST-STARBURST SYSTEM , 2011, 1104.0464.

[51]  C. Fransson,et al.  The 44Ti-powered spectrum of SN 1987A , 2011, 1103.3653.

[52]  Stephen Justham,et al.  SINGLE-DEGENERATE TYPE Ia SUPERNOVAE WITHOUT HYDROGEN CONTAMINATION , 2011, 1102.4913.

[53]  R. Di Stefano,et al.  SPIN-UP/SPIN-DOWN MODELS FOR TYPE Ia SUPERNOVAE , 2011, 1102.4342.

[54]  Bruno Leibundgut,et al.  Supernova Cosmology: Legacy and Future , 2011, 1102.1431.

[55]  G. Torres ON THE USE OF EMPIRICAL BOLOMETRIC CORRECTIONS FOR STARS , 2010, 1008.3913.

[56]  J. Sollerman,et al.  An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae , 2010, Nature.

[57]  T. P. O'Brien,et al.  The multi-object double spectrographs for the Large Binocular Telescope , 2006, Astronomical Telescopes + Instrumentation.

[58]  J. Sollerman,et al.  NEBULAR SPECTRA AND EXPLOSION ASYMMETRY OF TYPE Ia SUPERNOVAE , 2009, 0911.5484.

[59]  Daniel Kasen,et al.  SEEING THE COLLISION OF A SUPERNOVA WITH ITS COMPANION STAR , 2009, 0909.0275.

[60]  R. P. Butler,et al.  VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA, , 2009, 0907.1083.

[61]  L. Zampieri,et al.  ULTRAVIOLET SPECTROSCOPY OF SUPERNOVAE: THE FIRST TWO YEARS OF SWIFT OBSERVATIONS , 2009, 0906.0367.

[62]  Zhanwen Han,et al.  The helium star donor channel for the progenitors of Type Ia supernovae , 2009, 1003.4050.

[63]  A. Weiss,et al.  The impact of type Ia supernovae on main sequence binary companions , 2008, 0807.3331.

[64]  J. Hughes,et al.  Chandra Observations of Type Ia Supernovae: Upper Limits to the X-Ray Flux of SN 2002bo, SN 2002ic, SN 2005gj, and SN 2005ke , 2007, 0710.3190.

[65]  L. Pasquini,et al.  Upper limit for circumstellar gas around the type Ia SN 2000cx , 2007, 0708.3698.

[66]  P. Chandra,et al.  Detection of Circumstellar Material in a Normal Type Ia Supernova , 2007, Science.

[67]  N. Panagia,et al.  A Search for Radio Emission from Type Ia Supernovae , 2006, astro-ph/0603808.

[68]  Douglas C. Leonard,et al.  Constraining the Type Ia Supernova Progenitor: The Search for Hydrogen in Nebular Spectra , 2006, 0710.3166.

[69]  M. Reinecke,et al.  Three-dimensional modeling of type Ia supernovae - The power of late time spectra , 2005, astro-ph/0504317.

[70]  U. Oklahoma,et al.  Early and late time VLT spectroscopy of SN 2001el - Progenitor constraints for a type Ia supernova , 2005, astro-ph/0501433.

[71]  R. Kotak,et al.  The Diversity of Type Ia Supernovae: Evidence for Systematics? , 2004, astro-ph/0411059.

[72]  J. Sollerman,et al.  The late-time light curve of the type Ia supernova 2000cx , 2004, astro-ph/0409338.

[73]  R. Taam,et al.  Thermal Timescale Mass Transfer and the Evolution of White Dwarf Binaries , 2003, astro-ph/0310126.

[74]  M. Turatto,et al.  Detection of a Light Echo from SN 1998bu , 2001, astro-ph/0101342.

[75]  Adam Burrows,et al.  Type Ia Supernova Explosions in Binary Systems: The Impact on the Secondary Star and Its Consequences , 1999, astro-ph/9908116.

[76]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[77]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[78]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[79]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[80]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[81]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[82]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[83]  K. Nomoto,et al.  Accreting white dwarf models for type I supernovae. III. Carbon deflagration supernovae , 1984 .

[84]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[85]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[86]  K. Nomoto Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms , 1981 .

[87]  J. Whelan,et al.  Binaries and Supernovae of Type I , 1973 .

[88]  G. Vaucouleurs,et al.  Reference catalogue of bright galaxies , 1964 .

[89]  R. Minkowski No. 602. The spectra of the supernovae in IC 4182 and in NGC 1003. , 1939 .