Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology.

[1]  Yigong Shi Caspase Activation Revisiting the Induced Proximity Model , 2004, Cell.

[2]  Yigong Shi,et al.  Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by Reaper, Hid and Grim , 2004, Nature Structural &Molecular Biology.

[3]  R. Rich,et al.  Requirement of Both the Second and Third BIR Domains for the Relief of X-linked Inhibitor of Apoptosis Protein (XIAP)-mediated Caspase Inhibition by Smac* , 2003, Journal of Biological Chemistry.

[4]  G. Salvesen,et al.  Mechanisms of caspase activation. , 2003, Current opinion in cell biology.

[5]  Christophe Briand,et al.  Crystal Structure of Caspase-2, Apical Initiator of the Intrinsic Apoptotic Pathway* , 2003, Journal of Biological Chemistry.

[6]  H. Horvitz,et al.  NOBEL LECTURE: Worms, Life and Death , 2003, Bioscience reports.

[7]  Yigong Shi,et al.  Molecular mechanism of Reaper-Grim-Hid-mediated suppression of DIAP1-dependent Dronc ubiquitination , 2003, Nature Structural Biology.

[8]  H. Horvitz Worms, Life, and Death (Nobel Lecture) , 2003, Chembiochem : a European journal of chemical biology.

[9]  D. Green,et al.  A unified model for apical caspase activation. , 2003, Molecular cell.

[10]  C. Briand,et al.  Insights into the regulatory mechanism for caspase-8 activation. , 2003, Molecular cell.

[11]  S. Srinivasula,et al.  Mechanism of XIAP-mediated inhibition of caspase-9. , 2003, Molecular cell.

[12]  G. Gores,et al.  Synthetic Smac/DIABLO Peptides Enhance the Effects of Chemotherapeutic Agents by Binding XIAP and cIAP1 in Situ * , 2002, The Journal of Biological Chemistry.

[13]  Jun R Huh,et al.  Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms , 2002, Nature Cell Biology.

[14]  R. Cagan,et al.  Morgue mediates apoptosis in the Drosophila melanogaster retina by promoting degradation of DIAP1 , 2002, Nature Cell Biology.

[15]  A. Ciechanover,et al.  Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1 , 2002, Nature Cell Biology.

[16]  Daniel A. Colón-Ramos,et al.  Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition , 2002, Nature Cell Biology.

[17]  G. Salvesen,et al.  Apoptosis: IAP proteins: blocking the road to death's door , 2002, Nature Reviews Molecular Cell Biology.

[18]  S. Lowe,et al.  Generation and Characterization of Smac/DIABLO-Deficient Mice , 2002, Molecular and Cellular Biology.

[19]  K. Lauber,et al.  A caspase-related protease regulates apoptosis in yeast. , 2002, Molecular cell.

[20]  G. Salvesen,et al.  Reprieval from execution: the molecular basis of caspase inhibition. , 2002, Trends in biochemical sciences.

[21]  Yigong Shi A conserved tetrapeptide motif: potentiating apoptosis through IAP-binding , 2002, Cell Death and Differentiation.

[22]  L. Schwartz,et al.  Drosophila sickle Is a Novel grim-reaper Cell Death Activator , 2002, Current Biology.

[23]  Michael Weller,et al.  Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo , 2002, Nature Medicine.

[24]  G. Salvesen,et al.  Structural basis for the activation of human procaspase-7 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Liddington,et al.  Dimer formation drives the activation of the cell death protease caspase 9 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Yun-Ru Chen,et al.  Removal of the pro-domain does not affect the conformation of the procaspase-3 dimer. , 2001, Biochemistry.

[27]  X. Wang The expanding role of mitochondria in apoptosis. , 2001, Genes & development.

[28]  Emad S. Alnemri,et al.  Crystal Structure of a Procaspase-7 Zymogen Mechanisms of Activation and Substrate Binding , 2001, Cell.

[29]  Yigong Shi,et al.  Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides. , 2001, Molecular cell.

[30]  Emad S. Alnemri,et al.  correction: A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis , 2001, Nature.

[31]  Stephanie Birkey Reffey,et al.  Characterization of XIAP-Deficient Mice , 2001, Molecular and Cellular Biology.

[32]  David G. Myszka,et al.  Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex , 2001, Nature.

[33]  R. Liddington,et al.  Structural Basis for the Inhibition of Caspase-3 by XIAP , 2001, Cell.

[34]  Young Chul Park,et al.  Structural Basis of Caspase Inhibition by XIAP Differential Roles of the Linker versus the BIR Domain , 2001, Cell.

[35]  S. Srinivasula,et al.  Structural Basis of Caspase-7 Inhibition by XIAP , 2001, Cell.

[36]  Emad S. Alnemri,et al.  A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis , 2001, Nature.

[37]  G M Kasof,et al.  Livin, a Novel Inhibitor of Apoptosis Protein Family Member* , 2001, The Journal of Biological Chemistry.

[38]  Geng Wu,et al.  Structural basis of IAP recognition by Smac/DIABLO , 2000, Nature.

[39]  Stephen F. Betz,et al.  Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain , 2000, Nature.

[40]  S. Srinivasula,et al.  Molecular Determinants of the Caspase-promoting Activity of Smac/DIABLO and Its Role in the Death Receptor Pathway* , 2000, The Journal of Biological Chemistry.

[41]  B. Hay,et al.  Understanding IAP function and regulation: a view from Drosophila , 2000, Cell Death and Differentiation.

[42]  Junying Yuan,et al.  Apoptosis in the nervous system , 2000, Nature.

[43]  Xiaodong Wang,et al.  Structural and biochemical basis of apoptotic activation by Smac/DIABLO , 2000, Nature.

[44]  Xiaodong Wang,et al.  Smac, a Mitochondrial Protein that Promotes Cytochrome c–Dependent Caspase Activation by Eliminating IAP Inhibition , 2000, Cell.

[45]  Robert L Moritz,et al.  Identification of DIABLO, a Mammalian Protein that Promotes Apoptosis by Binding to and Antagonizing IAP Proteins , 2000, Cell.

[46]  K. Wilson,et al.  The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity. , 2000, Chemistry & biology.

[47]  J C Reed,et al.  Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[48]  Y. Lazebnik,et al.  Caspase-9 and APAF-1 form an active holoenzyme. , 1999, Genes & development.

[49]  S. Nagata,et al.  Fas ligand-induced apoptosis. , 1999, Annual review of genetics.

[50]  J. Abrams An emerging blueprint for apoptosis in Drosophila. , 1999, Trends in cell biology.

[51]  Stephen W. Fesik,et al.  NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP , 1999, Nature.

[52]  G. Salvesen,et al.  Caspase activation: the induced-proximity model. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[53]  A. Tomasselli,et al.  The atomic-resolution structure of human caspase-8, a key activator of apoptosis. , 1999, Structure.

[54]  Emad S. Alnemri,et al.  Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1 , 1999, Nature.

[55]  J C Reed,et al.  Caspase-9 Can Be Activated without Proteolytic Processing* , 1999, The Journal of Biological Chemistry.

[56]  J C Reed,et al.  IAP family proteins--suppressors of apoptosis. , 1999, Genes & development.

[57]  M. Lutter,et al.  Biochemical pathways of caspase activation during apoptosis. , 1999, Annual review of cell and developmental biology.

[58]  D. Baltimore,et al.  Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. , 1998, Science.

[59]  Y. Lazebnik,et al.  Caspases: enemies within. , 1998, Science.

[60]  Xiaodong Wang,et al.  Bid, a Bcl2 Interacting Protein, Mediates Cytochrome c Release from Mitochondria in Response to Activation of Cell Surface Death Receptors , 1998, Cell.

[61]  Junying Yuan,et al.  Cleavage of BID by Caspase 8 Mediates the Mitochondrial Damage in the Fas Pathway of Apoptosis , 1998, Cell.

[62]  S. Srinivasula,et al.  Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. , 1998, Molecular cell.

[63]  G. Sirugo,et al.  Induction of Apoptosis and Inhibition of Cell Proliferation bysurvivin Gene Targeting* , 1998, The Journal of Biological Chemistry.

[64]  D. Spencer,et al.  Synthetic activation of caspases: artificial death switches. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Brent R. Stockwell,et al.  An Induced Proximity Model for Caspase-8 Activation* , 1998, The Journal of Biological Chemistry.

[66]  D. Baltimore,et al.  Autoproteolytic activation of pro-caspases by oligomerization. , 1998, Molecular cell.

[67]  S. Srinivasula,et al.  Cytochrome c and dATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade , 1997, Cell.

[68]  D. Altieri,et al.  A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma , 1997, Nature Medicine.

[69]  M. Grütter,et al.  Structure of Recombinant Human CPP32 in Complex with the Tetrapeptide Acetyl-Asp-Val-Ala-Asp Fluoromethyl Ketone* , 1997, The Journal of Biological Chemistry.

[70]  N. Thornberry,et al.  The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis , 1996, Nature Structural Biology.

[71]  C. Thompson,et al.  Apoptosis in the pathogenesis and treatment of disease , 1995, Science.

[72]  J. Mankovich,et al.  Crystal structure of the cysteine protease interleukin-1β-converting enzyme: A (p20/p10)2 homodimer , 1994, Cell.

[73]  Mark A. Murcko,et al.  Structure and mechanism of interleukin-lβ converting enzyme , 1994, Nature.

[74]  A. Wyllie,et al.  Apoptosis: A Basic Biological Phenomenon with Wide-ranging Implications in Tissue Kinetics , 1972, British Journal of Cancer.