Analysis of Summatory Functions of Regular Sequences: Transducer and Pascal's Rhombus

The summatory function of a q-regular sequence in the sense of Allouche and Shallit is analysed asymptotically. The result is a sum of periodic fluctuations multiplied by a scaling factor. Each summand corresponds to an eigenvalues of absolute value larger than the joint spectral radius of the matrices of a linear representation of the sequence. The Fourier coefficients of the fluctuations are expressed in terms of residues of the corresponding Dirichlet generating function. A known pseudo Tauberian argument is extended in order to overcome convergence problems in Mellin-Perron summation. Two examples are discussed in more detail: The case of sequences defined as the sum of outputs written by a transducer when reading a q-ary expansion of the input and the number of odd entries in the rows of Pascal's rhombus.

[1]  J. Lagarias,et al.  The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .

[2]  Michael Drmota,et al.  A master theorem for discrete divide and conquer recurrences , 2011, SODA '11.

[3]  Alfred J. van der Poorten,et al.  Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..

[4]  R. Jungers The Joint Spectral Radius: Theory and Applications , 2009 .

[5]  V. Müller On the joint spectral radius , 1997 .

[6]  Hsien-Kuei Hwang,et al.  Digital Sums and Divide-and-Conquer Recurrences: Fourier Expansions and Absolute Convergence , 2005 .

[7]  G. Hardy,et al.  The general theory of Dirichlet's series , 1916, The Mathematical Gazette.

[8]  Clemens Heuberger,et al.  On the Number of Optimal Base 2 Representations of Integers , 2006, Des. Codes Cryptogr..

[9]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[10]  G. Hardy,et al.  An Introduction To The Theory Of Numbers Fourth Edition , 1968 .

[11]  Helmut Prodinger,et al.  Counting optimal joint digit expansions. , 2005 .

[12]  A. Cicone A note on the Joint Spectral Radius , 2015, 1502.01506.

[13]  Brigitte Vallée,et al.  Probabilistic analyses of the plain multiple gcd algorithm , 2016, J. Symb. Comput..

[14]  Philippe Dumas Joint spectral radius, dilation equations, and asymptotic behavior of radix-rational sequences , 2013 .

[15]  Helmut Prodinger,et al.  Output Sum of Transducers: Limiting Distribution and Periodic Fluctuation , 2015, Electron. J. Comb..

[16]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[17]  Helmut Prodinger,et al.  Mellin Transforms and Asymptotics: Digital Sums , 1994, Theor. Comput. Sci..

[18]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[19]  Philippe Dumas,et al.  Asymptotic Behaviour of a Non-commutative Rational Series with a Nonnegative Linear Representation , 2007, Discret. Math. Theor. Comput. Sci..

[20]  P. Heywood Trigonometric Series , 1968, Nature.

[21]  Jeffrey Shallit,et al.  The Ring of k-Regular Sequences , 1990, Theor. Comput. Sci..

[22]  John L. Goldwasser,et al.  The density of ones in Pascal's rhombus , 1999, Discret. Math..

[23]  Svante Janson,et al.  Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications , 2017, ACM Trans. Algorithms.

[24]  Philippe Dumas,et al.  Asymptotic expansions for linear homogeneous divide-and-conquer recurrences: Algebraic and analytic approaches collated , 2014, Theor. Comput. Sci..