Tilting Mutation of Weakly Symmetric Algebras and Stable Equivalence

[1]  Alex Dugas,et al.  Torsion Pairs and Simple-Minded Systems in Triangulated Categories , 2012, Appl. Categorical Struct..

[2]  D. Yang,et al.  Silting objects, simple-minded collections, $t$-structures and co-$t$-structures for finite-dimensional algebras , 2012, Documenta Mathematica.

[3]  A. Dugas On periodicity in bounded projective resolutions , 2012, 1203.2408.

[4]  E. Green,et al.  Gradings and Derived Categories , 2011 .

[5]  T. Aihara Mutating Brauer trees , 2010, 1009.3210.

[6]  Yuming Liu,et al.  Simple-minded systems in stable module categories , 2010, 1009.1427.

[7]  A. Dugas A construction of derived equivalent pairs of symmetric algebras , 2010, 1005.5152.

[8]  Changchang Xi,et al.  Derived equivalences and stable equivalences of Morita type, I , 2008, Nagoya Mathematical Journal.

[9]  B. Keller,et al.  Derived equivalences from mutations of quivers with potential , 2009, 0906.0761.

[10]  J. Weyman,et al.  Quivers with potentials and their representations II: Applications to cluster algebras , 2009, 0904.0676.

[11]  Jorge Vit'oria Mutations Vs. Seiberg duality , 2007, 0709.3939.

[12]  J. Chuang,et al.  Representations of finite groups and tilting , 2007 .

[13]  H. Asashiba On a Lift of an Individual Stable Equivalence to a Standard Derived Equivalence for Representation-Finite Self-injective Algebras , 2003 .

[14]  H. Asashiba,et al.  The Derived Equivalence Classification of Representation-Finite Selfinjective Algebras , 1999 .

[15]  T. Holm Derived Equivalence Classification of Algebras of Dihedral, Semidihedral, and Quaternion Type , 1999 .

[16]  T. Holm Derived Equivalent Tame Blocks , 1997 .

[17]  Z. Pogorzały Algebras stably equivalent to selfinjective special biserial algebras , 1994 .

[18]  Jeremy Rickard,et al.  Derived Equivalences As Derived Functors , 1991 .

[19]  J. Rickard Derived categories and stable equivalence , 1989 .

[20]  Jeremy Rickard,et al.  Morita Theory for Derived Categories , 1989 .