ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data

Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) represent two classes of important non-coding RNAs in eukaryotes. Although these non-coding RNAs have been implicated in organismal development and in various human diseases, surprisingly little is known about their transcriptional regulation. Recent advances in chromatin immunoprecipitation with next-generation DNA sequencing (ChIP-Seq) have provided methods of detecting transcription factor binding sites (TFBSs) with unprecedented sensitivity. In this study, we describe ChIPBase (http://deepbase.sysu.edu.cn/chipbase/), a novel database that we have developed to facilitate the comprehensive annotation and discovery of transcription factor binding maps and transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. The current release of ChIPBase includes high-throughput sequencing data that were generated by 543 ChIP-Seq experiments in diverse tissues and cell lines from six organisms. By analysing millions of TFBSs, we identified tens of thousands of TF-lncRNA and TF-miRNA regulatory relationships. Furthermore, two web-based servers were developed to annotate and discover transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. In addition, we developed two genome browsers, deepView and genomeView, to provide integrated views of multidimensional data. Moreover, our web implementation supports diverse query types and the exploration of TFs, lncRNAs, miRNAs, gene ontologies and pathways.

[1]  Logan J Everett,et al.  Species-specific strategies underlying conserved functions of metabolic transcription factors. , 2011, Molecular endocrinology.

[2]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[3]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[4]  Raymond K. Auerbach,et al.  Genome-Wide Identification of Binding Sites Defines Distinct Functions for Caenorhabditis elegans PHA-4/FOXA in Development and Environmental Response , 2010, PLoS genetics.

[5]  G. Bourque,et al.  Transposable elements have rewired the core regulatory network of human embryonic stem cells , 2010, Nature Genetics.

[6]  John S. Mattick,et al.  lncRNAdb: a reference database for long noncoding RNAs , 2010, Nucleic Acids Res..

[7]  Rory Johnson,et al.  Coassembly of REST and its cofactors at sites of gene repression in embryonic stem cells. , 2011, Genome research.

[8]  W. Ouwehand,et al.  Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. , 2010, Cell stem cell.

[9]  Stefano Piccolo,et al.  MicroRNA control of signal transduction , 2010, Nature Reviews Molecular Cell Biology.

[10]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature Biotechnology.

[11]  Rudolf Grosschedl,et al.  Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin. , 2010, Immunity.

[12]  Hui Zhou,et al.  starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data , 2010, Nucleic Acids Res..

[13]  Lior Pachter,et al.  Binding Site Turnover Produces Pervasive Quantitative Changes in Transcription Factor Binding between Closely Related Drosophila Species , 2010, PLoS biology.

[14]  Clifford A. Meyer,et al.  Differentiation-specific histone modifications reveal dynamic chromatin interactions and partners for the intestinal transcription factor CDX2. , 2010, Developmental cell.

[15]  Jonathan M. Monk,et al.  Wdr5 Mediates Self-Renewal and Reprogramming via the Embryonic Stem Cell Core Transcriptional Network , 2011, Cell.

[16]  Chris P. Ponting,et al.  Identification and Properties of 1,119 Candidate LincRNA Loci in the Drosophila melanogaster Genome , 2012, Genome biology and evolution.

[17]  Li Chen,et al.  hmChIP: a database and web server for exploring publicly available human and mouse ChIP-seq and ChIP-chip data , 2011, Bioinform..

[18]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[19]  Michael A. Beer,et al.  Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. , 2007, Molecular cell.

[20]  Aibin He,et al.  Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart , 2011, Proceedings of the National Academy of Sciences.

[21]  Raymond K. Auerbach,et al.  Integrative Analysis of the Caenorhabditis elegans Genome by the modENCODE Project , 2010, Science.

[22]  Ernest Fraenkel,et al.  A Quantitative Model of Transcriptional Regulation Reveals the Influence of Binding Location on Expression , 2010, PLoS Comput. Biol..

[23]  Michael F. Lin,et al.  Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals , 2009, Nature.

[24]  Gautier Koscielny,et al.  Ensembl 2012 , 2011, Nucleic Acids Res..

[25]  P. Park ChIP–seq: advantages and challenges of a maturing technology , 2009, Nature Reviews Genetics.

[26]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[27]  Robert L. Grossman,et al.  A cis-regulatory map of the Drosophila genome , 2011, Nature.

[28]  Manuel Serrano,et al.  Genome-wide CTCF distribution in vertebrates defines equivalent sites that aid the identification of disease-associated genes , 2011, Nature Structural &Molecular Biology.

[29]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature biotechnology.

[30]  A. Chinnaiyan,et al.  The emergence of lncRNAs in cancer biology. , 2011, Cancer discovery.

[31]  Terence P. Speed,et al.  Estrogen Receptor β Binds to and Regulates Three Distinct Classes of Target Genes* , 2010, The Journal of Biological Chemistry.

[32]  Hiroshi Handa,et al.  A general mechanism for transcription regulation by Oct1 and Oct4 in response to genotoxic and oxidative stress. , 2009, Genes & development.

[33]  Juri Rappsilber,et al.  JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells , 2010, Nature.

[34]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[35]  Arend Sidow,et al.  Jarid2/Jumonji Coordinates Control of PRC2 Enzymatic Activity and Target Gene Occupancy in Pluripotent Cells , 2009, Cell.

[36]  Hui Zhou,et al.  deepBase: a database for deeply annotating and mining deep sequencing data , 2009, Nucleic Acids Res..

[37]  J. Rinn,et al.  Large non-coding RNAs: missing links in cancer? , 2010, Human molecular genetics.

[38]  Edward Chuong,et al.  Chromatin and transcriptional signatures for Nodal signaling during endoderm formation in hESCs. , 2011, Developmental biology.

[39]  Bruno Peault,et al.  GATA4 regulates estrogen receptor-alpha-mediated osteoblast transcription. , 2011, Molecular endocrinology.

[40]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[41]  Sarah L Vowler,et al.  Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer. , 2010, Genes & development.

[42]  N. D. Clarke,et al.  Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells , 2008, Cell.

[43]  J. Rinn,et al.  Modular regulatory principles of large non-coding RNAs , 2012, Nature.

[44]  Ming Lu,et al.  TransmiR: a transcription factor–microRNA regulation database , 2009, Nucleic Acids Res..

[45]  J. Rinn,et al.  lincRNAs act in the circuitry controlling pluripotency and differentiation , 2011, Nature.

[46]  Trey Ideker,et al.  A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates the B cell fate , 2010, Nature Immunology.

[47]  S. Sunkin,et al.  Specific expression of long noncoding RNAs in the mouse brain , 2008, Proceedings of the National Academy of Sciences.

[48]  X. Shirley Liu,et al.  Essential and Redundant Functions of Caudal Family Proteins in Activating Adult Intestinal Genes , 2011, Molecular and Cellular Biology.

[49]  Mary Goldman,et al.  The UCSC Genome Browser database: extensions and updates 2011 , 2011, Nucleic Acids Res..

[50]  Alexander E. Kel,et al.  TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes , 2005, Nucleic Acids Res..

[51]  Zhaohui S. Qin,et al.  An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. , 2010, Cancer cell.

[52]  William Stafford Noble,et al.  Assessing computational tools for the discovery of transcription factor binding sites , 2005, Nature Biotechnology.

[53]  Allen D. Delaney,et al.  Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing , 2007, Nature Methods.

[54]  Barbara J. Graves,et al.  DNA Specificity Determinants Associate with Distinct Transcription Factor Functions , 2009, PLoS genetics.

[55]  Bas E. Dutilh,et al.  Genome-Wide Profiling of p63 DNA–Binding Sites Identifies an Element that Regulates Gene Expression during Limb Development in the 7q21 SHFM1 Locus , 2010, PLoS genetics.

[56]  P. Farnham Insights from genomic profiling of transcription factors , 2009, Nature Reviews Genetics.

[57]  Vishwanath R. Iyer,et al.  Wide-ranging functions of E2F4 in transcriptional activation and repression revealed by genome-wide analysis , 2011, Nucleic acids research.

[58]  Lorenzo Ferraro,et al.  Estrogen receptor alpha controls a gene network in luminal-like breast cancer cells comprising multiple transcription factors and microRNAs. , 2010, The American journal of pathology.

[59]  Andrew R. Gehrke,et al.  Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo , 2010, The EMBO journal.

[60]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[61]  Daniel Bottomly,et al.  Identification of β-catenin binding regions in colon cancer cells using ChIP-Seq , 2010, Nucleic acids research.

[62]  R. Spizzo,et al.  Long non-coding RNAs and cancer: a new frontier of translational research? , 2012, Oncogene.

[63]  Dennis B. Troup,et al.  NCBI GEO: archive for functional genomics data sets—10 years on , 2010, Nucleic Acids Res..

[64]  C. Glass,et al.  Reprogramming Transcription via Distinct Classes of Enhancers Functionally Defined by eRNA , 2011, Nature.

[65]  Ernest Fraenkel,et al.  Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. , 2009, Molecular cell.

[66]  A. Visel,et al.  ChIP-seq accurately predicts tissue-specific activity of enhancers , 2009, Nature.

[67]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[68]  H. Stunnenberg,et al.  ChIP‐Seq of ERα and RNA polymerase II defines genes differentially responding to ligands , 2009, The EMBO journal.

[69]  Henriette O'Geen,et al.  Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. , 2009, Molecular cell.

[70]  Lorenzo Ferraro,et al.  Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation , 2011, BMC Genomics.

[71]  G. Tuteja,et al.  Cell-Specific Determinants of Peroxisome Proliferator-Activated Receptor γ Function in Adipocytes and Macrophages , 2010, Molecular and Cellular Biology.

[72]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[73]  Victor X. Jin,et al.  Genomic Targets of the KRAB and SCAN Domain-containing Zinc Finger Protein 263* , 2009, The Journal of Biological Chemistry.

[74]  Martha L. Bulyk,et al.  UniPROBE, update 2011: expanded content and search tools in the online database of protein-binding microarray data on protein–DNA interactions , 2010, Nucleic Acids Res..

[75]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[76]  Ernest Fraenkel,et al.  Genome-Wide Profiling of H3K56 Acetylation and Transcription Factor Binding Sites in Human Adipocytes , 2011, PloS one.

[77]  Yvonne A. Evrard,et al.  Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA. , 2010, Genes & development.

[78]  Michael D. Wilson,et al.  Five-Vertebrate ChIP-seq Reveals the Evolutionary Dynamics of Transcription Factor Binding , 2010, Science.

[79]  Marcel Grunert,et al.  The Cardiac Transcription Network Modulated by Gata4, Mef2a, Nkx2.5, Srf, Histone Modifications, and MicroRNAs , 2011, PLoS genetics.

[80]  T. Borodina,et al.  The BTB and CNC Homology 1 (BACH1) Target Genes Are Involved in the Oxidative Stress Response and in Control of the Cell Cycle* , 2011, The Journal of Biological Chemistry.

[81]  Raymond K. Auerbach,et al.  A User's Guide to the Encyclopedia of DNA Elements (ENCODE) , 2011, PLoS biology.

[82]  M. Gerstein,et al.  Close association of RNA polymerase II and many transcription factors with Pol III genes , 2010, Proceedings of the National Academy of Sciences.

[83]  Mary Goldman,et al.  The UCSC Genome Browser database: extensions and updates 2013 , 2012, Nucleic Acids Res..

[84]  Herbert Schulz,et al.  RAD21 Cooperates with Pluripotency Transcription Factors in the Maintenance of Embryonic Stem Cell Identity , 2011, PloS one.

[85]  A. Visel,et al.  ChIP-Seq identification of weakly conserved heart enhancers , 2010, Nature Genetics.

[86]  Zhaohui S. Qin,et al.  On the detection and refinement of transcription factor binding sites using ChIP-Seq data , 2010, Nucleic acids research.

[87]  Jonathan Schug,et al.  Propagation of adipogenic signals through an epigenomic transition state. , 2010, Genes & development.

[88]  Angela Re,et al.  CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse , 2010, BMC Bioinformatics.

[89]  Ping Zhang,et al.  Integrated genome-wide chromatin occupancy and expression analyses identify key myeloid pro-differentiation transcription factors repressed by Myb , 2011, Nucleic acids research.

[90]  N. Rajewsky,et al.  A human snoRNA with microRNA-like functions. , 2008, Molecular cell.

[91]  A. Mortazavi,et al.  Computation for ChIP-seq and RNA-seq studies , 2009, Nature Methods.

[92]  Juri Rappsilber,et al.  A Functional Link between the Histone Demethylase PHF8 and the Transcription Factor ZNF711 in X-Linked Mental Retardation , 2010, Molecular cell.

[93]  B. Komm,et al.  Genome-Wide Analysis of Estrogen Receptor α DNA Binding and Tethering Mechanisms Identifies Runx1 as a Novel Tethering Factor in Receptor-Mediated Transcriptional Activation , 2010, Molecular and Cellular Biology.

[94]  Olaf Wolkenhauer,et al.  Computational analysis of target hub gene repression regulated by multiple and cooperative miRNAs , 2012, Nucleic acids research.

[95]  David J. Arenillas,et al.  JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles , 2009, Nucleic Acids Res..

[96]  Francesca Chiaromonte,et al.  Erythroid GATA 1 function revealed by genome-wide analysis of transcription factor occupancy , histone modifications , and mRNA expression , 2009 .

[97]  Clifford A. Meyer,et al.  Cistrome: an integrative platform for transcriptional regulation studies , 2011, Genome Biology.

[98]  Yuriy L Orlov,et al.  The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. , 2010, Cell stem cell.

[99]  Nevan J Krogan,et al.  Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. , 2010, Cell stem cell.

[100]  Chris P. Ponting,et al.  A Transcriptomic Atlas of Mouse Neocortical Layers , 2011, Neuron.

[101]  Raymond K. Auerbach,et al.  PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls , 2009, Nature Biotechnology.

[102]  Hui Zhou,et al.  Liver‐enriched transcription factors regulate MicroRNA‐122 that targets CUTL1 during liver development , 2010, Hepatology.