Recent studies on adaptive boundary element methods

Abstract This is a review of the recent studies on adaptive mesh refinement schemes for boundary element methods. We suppose that the adaptive mesh refinement schemes are constructed of error estimation, adaptive tactics and mesh refinement processes. The error estimation process estimates the error of numerical solution. The existing studies on error estimation are classified into residual type, interpolation error type, boundary integral equation error type, and others. The adaptive tactics process selects boundary elements to be refined and the related mesh refinement scheme. The mesh refinement process generates the data of the refined mesh. The existing studies on mesh refinement are classified into h-, p- and r-refinement, and their combination schemes. Various schemes proposed will be discussed from these three points of view.

[1]  P. Parreira,et al.  Quadratic H-Hierarchical Adaptive Boundary Elements , 1992 .

[2]  M. Guiggiani,et al.  Self-adaptive boundary elements with h- hierarchical shape functions , 1992 .

[3]  Masaaki Yokoyama,et al.  A self-adaptive mesh refinement technique for acquiring the desired accuracy in boundary element analyses. , 1989 .

[4]  E. Rank Adaptivity and Accuracy Estimation for Finite Element and Boundary Integral Element Methods , 1985 .

[5]  N. Zamani,et al.  Adaptive mesh refinement/redistribution for the equations of linear elasticity, boundary element formulation , 1992 .

[6]  E. Rank,et al.  Adaptive boundary element methods , 1987 .

[7]  J. Rencis,et al.  A self-adaptive h -refinement technique for the boundary element method , 1989 .

[8]  N. Kamiya,et al.  An adaptive BEM by sample point error analysis , 1992 .

[9]  R. Mullen,et al.  A Geometric Preprocessor for an h-Refinement Technique for the Boundary Element Method , 1988 .

[10]  N. Kamiya,et al.  Error analysis and adaptive refinement of boundary elements in elastic problem , 1992 .

[11]  Enrique Alarcón Álvarez,et al.  Elastostatics P-adaptive boundary elements for micros , 1988 .

[12]  Adaptive approximations for 3-D electrostatic plate problems , 1992 .

[13]  C. M. Soares,et al.  Adaptive boundary element method for bidimensional elasticity , 1988 .

[14]  p-adaptive boundary elements for three-dimensional potential problems , 1987 .

[15]  An Approach to H-Adaptive Boundary Element Method Using Local Reanalysis , 1992 .

[16]  Weiwei Sun,et al.  An adaptive h-r boundary element algorithm for the laplace equation , 1992 .

[17]  正明 横山,et al.  ズーミング法による構造解析の精度評価に関する基礎的研究 : 第4報, 境界要素法による2次元静弾性応力解析 , 1990 .

[18]  Miguel Cerrolaza The p- adaptive boundary integral equation method , 1992 .

[19]  p-ADAPTIVE BEM FOR TWO-DIMENSIONAL POTENTIAL AND ELASTIC PROBLEMS , 1990 .

[20]  P-Version of the Boundary Element Method for Elastostatic Problems , 1991 .

[21]  E. Alarcon,et al.  p-adaptive boundary elements , 1986 .

[22]  Graham F. Carey,et al.  GRADING FUNCTIONS AND MESH REDISTRIBUTION , 1985 .

[23]  O. Zienkiewicz,et al.  Finite elements and approximation , 1983 .

[24]  Massimo Guiggiani,et al.  ERROR INDICATORS FOR ADAPTIVE MESH REFINEMENT IN THE BOUNDARY ELEMENT METHOD - A NEW APPROACH , 1990 .

[25]  h- and p- adaptive boundary element methods , 1992 .

[26]  R. Kleinman,et al.  Feasible Error Estimates in Boundary Element Methods , 1992 .

[27]  J. Rencis,et al.  Absolute p-Refinement of Two-Dimensional Elasticity Problems in the Vicinity of Boundary Solution Singularities , 1990 .

[28]  Marc S. Ingber,et al.  Grid optimization for the boundary element method , 1986 .

[29]  Masaaki Yokoyama,et al.  A self-adaptive mesh refinement technique for acquiring the desired accuracy in three-dimensional boundary element analyses. , 1990 .

[30]  Carlos Alberto Brebbia,et al.  The Boundary Element Method for Engineers , 1978 .

[31]  Eisuke Kita,et al.  An Easy Adaptive Boundary Mesh for 2D Elastic Problem , 1992 .

[32]  Further Applications of P-Adaptive Boundary Elements , 1988 .

[33]  Graham F. Carey,et al.  Adaptive mesh redistribution for a boundary element (panel) method , 1987 .

[34]  Robert L. Mullen,et al.  Solution of elasticity problems by a self‐adaptive mesh refinement technique for boundary element computation , 1986 .

[35]  Ernst Rank,et al.  Adaptive h-, p- and hp- versions for boundary integral element methods , 1989 .

[36]  N. G. Zamani,et al.  Adaptive mesh redistribution for the boundary element in elastostatics , 1990 .

[37]  良治 桔城,et al.  BEM解析支援エキスパートシステムの開発 : 第2報 誤差評価とアダプティブメッシング , 1991 .

[38]  Efficient error estimation and adaptive meshing method for boundary element analysis , 1992 .

[39]  N. G. Zamani,et al.  Adaptive r and h-r algorithms for boundary elements , 1992 .

[40]  Pedro Parreira,et al.  Adaptive hierarchical boundary elements , 1992 .

[41]  Norio Kamiya,et al.  Adaptive Boundary Element for the Problem with Subregion Partition. , 1993 .

[42]  E. Kita,et al.  A new adaptive boundary mesh refinement based on simple algorithm , 1991 .

[43]  P. Parreira Self-Adaptive P-Hierarchical Boundary Elements in Elastostatics , 1987 .

[44]  B. Guo,et al.  An $h$-$p$ version of BEM for plane mixed boundary value problems , 1989 .

[45]  A new residue and nodal error evaluation in h- adaptive boundary element method , 1992 .