Mitigation techniques of channel collisions in the TTFR-based asynchronous spectral phase-encoded optical CDMA system

In this paper, we propose a chip-level detection and a spectral-slice scheme for the tunable-transmitter/fixed-receiver (TTFR)-based asynchronous spectral phase-encoded optical code-division multiple-access (CDMA) system combined with time-encoding. The chip-level detection can enhance the tolerance of multiple access interference (MAI) because the channel collision does not occur as long as there is at least one weighted position without MAI. Moreover, the spectral-slice scheme can reduce the interference probability because the MAI with the different frequency has no adverse effects on the channel collision rate. As a result, these techniques mitigate channel collisions. We analyze the channel collision rate theoretically, and show that the proposed system can achieve a lower channel collision rate in comparison to both conventional systems with and without the time-encoding method.

[1]  Guu-chang Yang,et al.  A new family of wavelength-time optical CDMA codes utilizing programmable arrayed waveguide gratings , 2005, IEEE Journal on Selected Areas in Communications.

[2]  C. Boisrobert,et al.  Fiber Optic Communication Systems , 1979 .

[3]  K. Kamakura,et al.  Optical frequency-encoding CDMA systems using time-encoding for MAI mitigation , 1999, 1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999). Conference Proceedings (Cat. No.99CH36368).

[4]  Zhi Ding,et al.  Performance analysis for optical CDMA networks with random access schemes , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[5]  Zhi Ding,et al.  Performance evaluation of optical CDMA networks with random media access schemes , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[6]  M. Ibsen,et al.  Feasibility Study of SOA-Based Noise Suppression for Spectral Amplitude Coded OCDMA , 2007, Journal of Lightwave Technology.

[7]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. I. Fundamental principles , 1989, IEEE Trans. Commun..

[8]  M. Ida,et al.  Monolithic Integration of InP HBTs and Uni-Traveling-Carrier Photodiodes Using Nonselective Regrowth , 2007, IEEE Transactions on Electron Devices.

[9]  Paul R. Prucnal,et al.  Spread spectrum fiber-optic local area network using optical processing , 1986 .

[10]  Andrew M. Weiner,et al.  Coherent ultrashort light pulse code-division multiple access communication systems , 1990 .

[11]  J. R. Clark Optical communications , 1977, Proceedings of the IEEE.

[12]  Hossam M. H. Shalaby,et al.  Chip-level detection in optical code division multiple access , 1998 .

[13]  K. Kamakura,et al.  Optical spread time CDMA communications system with PPM signaling , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[14]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis , 1989, IEEE Trans. Commun..

[15]  Xu Wang,et al.  Analysis of beat noise in coherent and incoherent time-spreading OCDMA , 2004, Journal of Lightwave Technology.

[16]  Hyuck M. Kwon,et al.  Optical orthogonal code-division multiple-access system .I. APD noise and thermal noise , 1994, IEEE Trans. Commun..

[17]  W. Chujo,et al.  Highly spectral-efficient optical code-division multiplexing transmission system , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  Fan Chung Graham,et al.  Optical orthogonal codes: Design, analysis, and applications , 1989, IEEE Trans. Inf. Theory.

[19]  V.J. Hernandez,et al.  Spectral phase-encoded time-spreading (SPECTS) optical code-division multiple access for terabit optical access networks , 2004, Journal of Lightwave Technology.

[21]  T. Furuta,et al.  High-speed and high-output-power uni-traveling-carrier photodiodes , 2005, 2005 IEEE LEOS Annual Meeting Conference Proceedings.