Three-tangle for mixtures of generalized GHZ and generalized W states

We give a complete solution for the three-tangle of mixed three-qubit states composed of a generalized Greenberger–Horne–Zeilinger (GHZ) state, a|000+b|111, and a generalized W state, c|001+d|010+f|100. Using the methods introduced by Lohmayer et al (2006 Phys. Rev. Lett. 97 260502), we provide explicit expressions for the mixed-state three-tangle and the corresponding optimal decompositions for this more general case. Moreover, as a special case, we obtain a general solution for a family of states consisting of a generalized GHZ state and an orthogonal product state.

[1]  A. Miyake Classification of multipartite entangled states by multidimensional determinants , 2002, quant-ph/0206111.

[2]  F. Verstraete,et al.  General monogamy inequality for bipartite qubit entanglement. , 2005, Physical review letters.

[3]  A. Uhlmann,et al.  Entangled three-qubit states without concurrence and three-tangle. , 2006, Physical review letters.

[4]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[5]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[6]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[7]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  A Sudbery,et al.  Local symmetry properties of pure three-qubit states , 2000 .

[9]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[10]  A. Uhlmann,et al.  Tangles of superpositions and the convex-roof extension , 2007, 0710.5909.

[11]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[12]  B. Moor,et al.  Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.

[13]  P. Goldbart,et al.  Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.

[14]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[15]  Chang-shui Yu,et al.  Existence criterion of genuine tripartite entanglement , 2006, 0812.5009.

[16]  M. S. Leifer,et al.  Measuring polynomial invariants of multiparty quantum states , 2003, quant-ph/0308008.

[17]  A. Uhlmann Fidelity and Concurrence of conjugated states , 1999, quant-ph/9909060.

[18]  J. Cirac,et al.  Separability and Distillability of Multiparticle Quantum Systems , 1999, quant-ph/9903018.

[19]  Jian-Wei Pan,et al.  Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.

[20]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[21]  Geometry of three-qubit entanglement , 2004, quant-ph/0403060.

[22]  Tarrach,et al.  Generalized schmidt decomposition and classification of three-quantum-Bit states , 2000, Physical Review Letters.

[23]  Degree of entanglement for two qubits , 2001, quant-ph/0109081.

[24]  A. Acín,et al.  Three-qubit pure-state canonical forms , 2000, quant-ph/0009107.

[25]  D. Loss,et al.  Highly entangled ground States in tripartite qubit systems. , 2007, Physical review letters.

[26]  M. Lewenstein,et al.  Classification of mixed three-qubit states. , 2001, Physical review letters.

[27]  A. Osterloh,et al.  Constructing N-qubit entanglement monotones from antilinear operators (4 pages) , 2004, quant-ph/0410102.

[28]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[29]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.