Mixture Subclass Discriminant Analysis

In this letter, mixture subclass discriminant analysis (MSDA) that alleviates two shortcomings of subclass discriminant analysis (SDA) is proposed. In particular, it is shown that for data with Gaussian homoscedastic subclass structure a) SDA does not guarantee to provide the discriminant subspace that minimizes the Bayes error, and, b) the sample covariance matrix can not be used as the minimization metric of the discriminant analysis stability criterion (DSC). Based on this analysis MSDA modifies the objective function of SDA and utilizes a novel partitioning procedure to aid discrimination of data with Gaussian homoscedastic subclass structure. Experimental results confirm the improved classification performance of MSDA.

[1]  A. Kai Qin,et al.  Rapid and brief communication Uncorrelated heteroscedastic LDAbasedon theweightedpairwise Chernoff criterion , 2004 .

[2]  D. B. Graham,et al.  Characterising Virtual Eigensignatures for General Purpose Face Recognition , 1998 .

[3]  R. Tibshirani,et al.  Discriminant Analysis by Gaussian Mixtures , 1996 .

[4]  D. B. Gerham Characterizing virtual eigensignatures for general purpose face recognition , 1998 .

[5]  Ravi Kothari,et al.  Fractional-Step Dimensionality Reduction , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Robert P. W. Duin,et al.  Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Yiannis Kompatsiaris,et al.  Automatic event-based indexing of multimedia content using a joint content-event model , 2010, EiMM '10.

[8]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[9]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[10]  Xuelong Li,et al.  Geometric Mean for Subspace Selection , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Konstantinos N. Plataniotis,et al.  Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition , 2005, Pattern Recognit. Lett..

[12]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[13]  Aleix M. Martínez,et al.  Where are linear feature extraction methods applicable? , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Aleix M. Martínez,et al.  Subclass discriminant analysis , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.