Optimum energy-based design of BRB frames using nonlinear response history analysis

In this paper, an optimum design method for buckling restrained brace frames subjected to seismic loading is presented. The multi-objective charged system search is developed to optimize costs and damages caused by the earthquake for steel frames. Minimum structural weight and minimum seismic energy which including seismic input energy divided by maximum hysteretic energy of fuse members are selected as two objective functions to find a Pareto solutions that copes with considered preferences. Also, main design constraints containing allowable amount of the inter-story drift and plastic rotation of beam, column members and plastic displacement of buckling restrained braces are controlled. The results of optimum design for three different frames are obtained and investigated by the developed method.

[1]  Huu-Tai Thai,et al.  Nonlinear inelastic analysis of space frames , 2011 .

[2]  Ayse T. Daloglu,et al.  Optimum design of steel space frames including soil-structure interaction , 2016 .

[3]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[4]  Michael H. Scott,et al.  Plastic Hinge Integration Methods for Force-Based Beam¿Column Elements , 2006 .

[5]  Wai-Fah Chen,et al.  Advanced Analysis of Steel Frames: Theory, Software, and Applications , 2017 .

[6]  William McGuire,et al.  Modified Tangent Modulus Approach, A Contribution to Plastic Hinge Analysis , 2002 .

[7]  Christopher M. Foley,et al.  Inelastic Behavior of Multistory Partially Restrained Steel Frames. Part II , 1999 .

[8]  Huu-Tai Thai,et al.  Second-order inelastic dynamic analysis of steel frames using fiber hinge method , 2011 .

[9]  Siamak Talatahari,et al.  Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures , 2009 .

[10]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[11]  Y. Gholipour,et al.  Optimal seismic design of 3D steel moment frames: different ductility types , 2017 .

[12]  Murray J. Clarke,et al.  Plastic-zone analysis of 3D steel frames using beam elements , 1999 .

[13]  K. Hjelmstad,et al.  Variational Basis of Nonlinear Flexibility Methods for Structural Analysis of Frames , 2005 .

[14]  C. G. Chiorean,et al.  A computer method for nonlinear inelastic analysis of 3D semi-rigid steel frameworks , 2009 .

[15]  Seung-Eock Kim,et al.  Distributed plasticity approach for time-history analysis of steel frames including nonlinear connections , 2014 .

[16]  S. O. Degertekin Optimum design of steel frames using harmony search algorithm , 2008 .

[17]  Christopher M. Foley,et al.  Advanced Analysis of Steel Frames Using Parallel Processing and Vectorization , 2001 .

[18]  Siamak Talatahari,et al.  Optimal design of skeletal structures via the charged system search algorithm , 2010 .

[19]  A. Kaveh,et al.  Charged system search for optimal design of frame structures , 2012, Appl. Soft Comput..

[20]  Wai-Fah Chen,et al.  Stability design of semi-rigid frames , 1996 .

[21]  Mohammad Ranjbar,et al.  Multi-mode renewable resource-constrained allocation in PERT networks , 2012, Appl. Soft Comput..

[22]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .

[23]  S. O. Degertekin,et al.  Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases , 2010 .

[24]  Cuong Ngo-Huu,et al.  Nonlinear inelastic response history analysis of steel frame structures using plastic-zone method , 2014 .

[25]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[26]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[27]  Siamak Talatahari,et al.  A CHARGED SYSTEM SEARCH WITH A FLY TO BOUNDARY METHOD FOR DISCRETE OPTIMUM DESIGN OF TRUSS STRUCTURES , 2010 .

[28]  Siamak Talatahari,et al.  A particle swarm ant colony optimization for truss structures with discrete variables , 2009 .

[29]  Viet-Hung Truong,et al.  An efficient method for reliability-based design optimization of nonlinear inelastic steel space frames , 2017 .

[30]  Donald W. White,et al.  Displacement, Flexibility, and Mixed Beam – Column Finite Element Formulations for Distributed Plasticity Analysis , 2005 .

[31]  A. Kaveh,et al.  Optimal design of large-scale space steel frames using cascade enhanced colliding body optimization , 2017 .

[32]  Michael H. Scott,et al.  Response sensitivity for nonlinear beam-column elements , 2004 .

[33]  Filip C. Filippou,et al.  Evaluation of Nonlinear Frame Finite-Element Models , 1997 .

[34]  F. Filippou,et al.  Mixed formulation of nonlinear beam finite element , 1996 .

[35]  Christopher M. Foley,et al.  Inelastic analysis of partially restrained unbraced steel frames , 1997 .

[36]  Michael H. Scott,et al.  Software Patterns for Nonlinear Beam-Column Models , 2008 .