Microstructure evolution of WC grains in WC–Co–Ni–Al alloys: Effect of binder phase composition

[1]  Weibin Zhang,et al.  A new type of WC–Co–Ni–Al cemented carbide: Grain size and morphology of γ′-strengthened composite binder phase , 2017 .

[2]  Yong Du,et al.  A thermodynamic description of the Al–Co–Ni system and site occupancy in Co + AlNi3 composite binder phase , 2016 .

[3]  J. Ruan,et al.  Investigation on morphology evolution of coarse grained WC–6Co cemented carbides fabricated by ball milling route and hydrogen reduction route , 2016 .

[4]  Shinhoo Kang,et al.  WC platelet formation via high-energy ball mill , 2014 .

[5]  C. Kübel,et al.  Strengthening zones in the Co matrix of WC-Co cemented carbides , 2014 .

[6]  Y. Kong,et al.  Microstructure and composition of the grain/binder interface in WC–Ni3Al composites , 2014 .

[7]  A. Borgenstam,et al.  Microstructure, grain size distribution and grain shape in WC–Co alloys sintered at different carbon activities , 2014 .

[8]  G. Wen,et al.  CSUTDCC1—A thermodynamic database for multicomponent cemented carbides , 2014 .

[9]  A. Borgenstam,et al.  Effect of carbon activity and powder particle size on WC grain coarsening during sintering of cemented carbides , 2014 .

[10]  J. Missiaen,et al.  Microstructure and Morphology of Hardmetals , 2014 .

[11]  Tao Xu,et al.  Microstructure, mechanical properties and fracture behavior of WC-40 vol.% Ni3Al composites with various carbon contents , 2013 .

[12]  P. Withers,et al.  On the three-dimensional structure of WC grains in cemented carbides , 2013 .

[13]  Tao Xu,et al.  WC–Ni3Al–B composites prepared through Ni+Al elemental powder route , 2012 .

[14]  L. Shaw,et al.  WC-18 wt.% Co with simultaneous improvements in hardness and toughness derived from nanocrystalline powder , 2012 .

[15]  V. Zavodinsky Ab intio study of inhibitors influence on growth of WC crystallites in WC/Co hard alloys , 2012 .

[16]  L. Shaw,et al.  Growth mechanisms of WC in WC5.75 wt% Co , 2011 .

[17]  A. Borgenstam,et al.  Abnormal grain growth in cemented carbides — Experiments and simulations , 2011 .

[18]  A. Senos,et al.  Cemented carbide phase diagrams: A review , 2011 .

[19]  R. Ramprasad,et al.  The equilibrium morphology of WC particles – A combined ab initio and experimental study , 2011 .

[20]  A. Borgenstam,et al.  Carbide grain growth in cemented carbides , 2011 .

[21]  D. Busquets,et al.  Synthesis and processing of nanocrystalline tungsten carbide: Towards cemented carbides with optimal mechanical properties , 2011 .

[22]  M. Gol’dberg,et al.  Interaction of tungsten carbide with aluminum nickelide Ni3Al , 2009 .

[23]  T. Weirich,et al.  On the mechanism of WC coarsening in WC–Co hardmetals with various carbon contents , 2009 .

[24]  A. V. Shatov,et al.  Modeling the effect of flatter shape of WC crystals on the hardness of WC-Ni cemented carbides , 2009 .

[25]  S. Lay,et al.  Evolution of the WC grain shape in WC–Co alloys during sintering: Cumulated effect of the Cr addition and of the C content , 2009 .

[26]  Dong-Yeol Yang,et al.  Suppression of abnormal grain growth in WC–Co via pre-sintering treatment , 2009 .

[27]  Randall M. German,et al.  Review: liquid phase sintering , 2009 .

[28]  S. Lay,et al.  Evolution of the WC grain shape in WC–Co alloys during sintering: Effect of C content , 2009 .

[29]  J. Ågren,et al.  Analysis of WC grain growth during sintering using electron backscatter diffraction and image analysis , 2008 .

[30]  S. Lay,et al.  Morphology of WC grains in WC–Co alloys , 2008 .

[31]  M. Ahmadian,et al.  Effect of Boron on the WC Morphology in Sub Micron Tungsten Carbide-Aluminide Composites , 2007 .

[32]  S. Lay,et al.  Morphology of WC grains in WC-Co alloys: Theoretical determination of grain shape , 2007 .

[33]  M. Ahmadian,et al.  The Effect of Boron on the Hardness and Fracture Toughness of WC-FeAl-B and WC-Ni3Al-B Composites , 2007 .

[34]  W. Schubert,et al.  Hardmetals with “rounded” WC grains , 2006 .

[35]  W. Jo,et al.  Effect of Interface Structure on the Microstructural Evolution of Ceramics , 2006 .

[36]  K. Ishida,et al.  Cobalt-Base High-Temperature Alloys , 2006, Science.

[37]  Suk‐Joong L. Kang,et al.  Growth behavior of rounded (Ti,W)C and faceted WC grains in a Co matrix during liquid phase sintering , 2005 .

[38]  F. Schäfer,et al.  Novel ultra-coarse hardmetal grades with reinforced binder for mining and construction , 2005 .

[39]  S. Lay,et al.  Quantitative analysis of WC grain shape in sintered WC-Co cemented carbides. , 2005, Physical review letters.

[40]  W. Mullins,et al.  Coarsening of Faceted Crystals , 2004 .

[41]  Hyoun‐Ee Kim,et al.  Variation of WC grain shape with carbon content in the WC–Co alloys during liquid-phase sintering , 2003 .

[42]  Y. Wang,et al.  Microstructure Evolution in the Cemented Carbides WC–Co I. Effect of the C/W Ratio on the Morphology and Defects of the WC Grains , 2002 .

[43]  Doh-Yeon Kim,et al.  Ostwald ripening kinetics of angular grains dispersed in a liquid phase by two-dimensional nucleation and abnormal grain growth , 2002 .

[44]  W. Schubert,et al.  On the formation of very large WC crystals during sintering of ultrafine WC–Co alloys , 2002 .

[45]  K. Choi,et al.  Effect of VC addition on microstructural evolution of WC–Co alloy: mechanism of grain growth inhibition , 2000 .

[46]  H. Ryoo,et al.  Anisotropic atomic packing model for abnormal grain growth mechanism of WC-25wt.%Co alloy , 1998 .

[47]  A. V. Shatov,et al.  The shape of WC crystals in cemented carbides , 1998 .

[48]  N. Hwang,et al.  Abnormal growth of faceted (WC) grains in a (Co) liquid matrix , 1996 .

[49]  B. Roebuck,et al.  Identification of optimum binder phase compositions for improved WC hard metals , 1988 .

[50]  Jan-Olof Andersson,et al.  The Thermo-Calc databank system☆ , 1985 .

[51]  R. Warren Solid-liquid interfacial energies in binary and pseudo-binary systems , 1980 .