Accurate Atomic Transition Probabilities for Hydrogen, Helium, and Lithium

We have carried out a comprehensive tabulation of the atomic transition probabilities for allowed and forbidden lines of hydrogen, helium and lithium, including Li II , as well as the hydrogen isotopes deuterium and tritium. Altogether, we tabulated about 3600 transitions and listed scaling relations for the hydrogenlike ions He II and Li III . The selected data are based on a critical evaluation of available literature sources and are all taken from recent advanced calculations. The tables are normally arranged in multiplets, and these are ordered in increasing excitation energies. For hydrogen, deuterium, and tritium, the energy levels are degenerate, i.e., all energy levels of the same principal quantum number essentially coincide. Thus, the principal tables for these species are for the average transition probabilities of lines between different principal quantum numbers.

[1]  W. Wiese,et al.  Erratum: “Improved Critical Compilations of Selected Atomic Transition Probabilities for Neutral and Singly Ionized Carbon and Nitrogen” [J. Phys. Chem. Ref. Data 36, 1287–1345 (2007)] , 2007 .

[2]  Robert N. Goldberg,et al.  Improved Critical Compilations of Selected Atomic Transition Probabilities for Neutral and Singly , 2007 .

[3]  D. Morton,et al.  A Multiplet Table for Neutral Helium (4He I) with Transition Rates , 2007 .

[4]  Gordon W. F. Drake,et al.  High Precision Calculations for Helium , 2006 .

[5]  Gordon W. F. Drake,et al.  Springer Handbook of Atomic, Molecular, and Optical Physics , 2023, Springer Handbooks.

[6]  C. F. Bunge,et al.  Transition Probabilities for Hydrogen-Like Atoms , 2004 .

[7]  J. Reader Reference Wavelengths for Strong Lines of Atomic Hydrogen and Deuterium , 2004, Applied spectroscopy.

[8]  C. F. Bunge,et al.  Salient Features of Electric and Magnetic Multipole Transition Probabilities of Hydrogen-Like Systems , 2004 .

[9]  B. Taylor,et al.  The Energy Levels of Hydrogen and Deuterium , 2004 .

[10]  Zong-Chao Yan Lifetimes for the 1s2sns 4S states of lithium , 2003 .

[11]  N. M. Cann,et al.  Quadrupole oscillator strengths for the helium isoelectronic sequence: n 1S-m 1D, n 3S-m 3D, n 1P-m 1P, and n 3P-m 3P transitions with n <7 and m <7 , 2002 .

[12]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[13]  N. Badnell,et al.  DIELECTRONIC RECOMBINATION OF GROUND-STATE AND METASTABLE LI+ IONS , 1999, physics/9907030.

[14]  Bai-wen Li,et al.  Oscillator strengths for 32D–n2F transitions of the lithium isoelectronic sequence , 1999 .

[15]  G. W. F. Drake,et al.  High Precision Theory of Atomic Helium , 1999 .

[16]  C. Fischer,et al.  BREIT–PAULI ENERGIES, TRANSITION PROBABILITIES, AND LIFETIMES FOR 2s, 2p, 3s, 3p, 3d, 4s2LLEVELS OF THE LITHIUM SEQUENCE,Z= 3–8 , 1998 .

[17]  V. G. Pal’chikov Relativistic Transition Probabilities and Oscillator Strengths in Hydrogen-like Atoms , 1998 .

[18]  P. Mohr,et al.  Poster Papers: International Conference on Atomic and Molecular Data and Their Applications (ICAMDATA 97) , 1998 .

[19]  Guan Xiao-xu,et al.  Energy and Oscillator Strength for Lithium Atom , 1997 .

[20]  M. Aubert-Frécon,et al.  General analytical form for the long-range potential of the (ns+np J ) 0 + u states of alkali dimers applied to 6 Li 2 , 1997 .

[21]  Ming-Keh Chen Electric dipole transitions in helium isoelectronic sequences , 1997 .

[22]  W. Woźnicki,et al.  Hylleraas-type calculations for lithium , 1996 .

[23]  R. Garstang Radiative hyperfine transitions. , 1995 .

[24]  R. Gould Radiative hyperfine transitions , 1994 .

[25]  Thakkar,et al.  Oscillator strengths for S-P and P-D transitions in heliumlike ions. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[26]  P. Mukherjee,et al.  Magnetic quadrupolar (M2) transition probabilities and triplet excited Rydberg states of helium-like ions , 1989 .

[27]  H. E. Saraph,et al.  Atomic data for opacity calculations. IX. The lithium isoelectronic sequence , 1988 .

[28]  D. Beck Many-electron effects in and operator forms for electron quadrupole transition probabilities , 1981 .

[29]  M. Godefroid,et al.  MCHF calculations of electric dipole and quadrupole oscillator strengths along the helium isoelectronic sequence , 1980 .

[30]  G. Drake Unified relativistic theory for 1s2p P13-1s2 S01 and 1s2p P11-1s2 S01 frequencies and transition rates in heliumlike ions , 1979 .

[31]  J A D Matthew,et al.  The Hartree–Fock Method for Atoms: A Numerical Approach , 1978 .

[32]  Glen W. Erickson,et al.  Energy levels of one‐electron atoms , 1977 .

[33]  A. Corney,et al.  Atomic and laser spectroscopy , 1977 .

[34]  E. Arimondo,et al.  Experimental determinations of the hyperfine structure in the alkali atoms , 1977 .

[35]  J. Rumble,et al.  Upper and lower bounds to atomic and molecular properties. III. Lithium oscillator strengths for variousS2−P2transitions , 1976 .

[36]  H. Moos,et al.  Experimental determination of the single-photon transition rate between the S-213 and S-101 states of He i , 1975 .

[37]  T. Caves Electric quadrupole transitions in neutral Li , 1975 .

[38]  S. Sengupta Electric quadrupole transitions in LiI, BeII, BIII , 1975 .

[39]  W. Johnson,et al.  Dirac-Hartree-Fock calculation of the 2 S 1 3 → 1 S 0 1 transition rates for the He isoelectronic sequence , 1974 .

[40]  G. Drake Theory of relativistic magnetic dipole transitions: Lifetime of the metastable 2S3 state of the heliumlike ions , 1971 .

[41]  G. Drake Erratum: the N ^{3}P_{2}-1 ^{1}S_{0} Magnetic-Quadrupole Transitions of the Helium Sequence , 1969 .

[42]  G. Drake The n super 3 P sub 2-1 super 1 S sub 0 magnetic quadrupole transitions of the helium sequence , 1969 .

[43]  C. Pekeris,et al.  fValues for Transitions between the1S1,2S1, and2S3, and the2P1,2P3,3P1, and3P3States in Helium , 1964 .

[44]  Louis C. Green,et al.  Oscillator Strengths and Matrix Elements for the Electric Dipole Moment for Hydrogen. , 1957 .