Equivariant intersection theory (With an Appendix by Angelo Vistoli: The Chow ring of M2)
暂无分享,去创建一个
[1] D. Edidin. The codimension-two homology of the moduli space of stable curves is algebraic , 1992 .
[2] The Chow Ring of the Non-Linear Grassmannian , 1996, alg-geom/9604022.
[3] M. Artin,et al. Versal deformations and algebraic stacks , 1974 .
[4] M. Atiyah,et al. Equivariant $K$-theory and completion , 1969 .
[5] D. Mumford,et al. The irreducibility of the space of curves of given genus , 1969 .
[6] Michael Atiyah,et al. The moment map and equivariant cohomology , 1984 .
[7] Spencer Bloch,et al. Algebraic cycles and higher K-theory , 1986 .
[8] B. Iversen. A fixed point formula for action of tori on algebraic varieties , 1972 .
[9] Angelo Vistoli. Intersection theory on algebraic stacks and on their moduli spaces , 1989 .
[10] R. Thomason. Lefschetz-Riemann-Roch theorem and coherent trace formula , 1986 .
[11] W. Fulton,et al. Riemann-Roch Algebra , 1985 .
[12] B. Iversen,et al. Chern Numbers and Diagonalizable Groups , 1975 .
[13] Kimura Shun-ichi. Fractional intersection and bivariant theory , 1992 .
[14] H. Gillet. Intersection theory on algebraic stacks and Q-varieties , 1984 .
[15] R. E. Briney. Intersection Theory on Quotients of Algebraic Varieties , 1962 .
[16] C. S. Seshadri. Quotient Spaces Modulo Reductive Algebraic Groups , 1972 .
[17] T. Chinburg,et al. Riemann-Roch type theorems for arithmetic schemes with a finite group action. , 1997 .
[18] Quotient Spaces Modulo Algebraic Groups , 1995, alg-geom/9503007.
[19] C. S. Seshadri. Geometric reductivity over arbitrary base , 1977 .
[20] David Mumford,et al. Towards an Enumerative Geometry of the Moduli Space of Curves , 1983 .
[21] G. Ellingsrud,et al. Bott’s formula and enumerative geometry , 1994 .
[22] Amnon Yekutieli. On adelic Chern forms and the Bott residue formula , 1996 .
[23] Hideyasu Sumihiro,et al. Equivariant completion II , 1975 .
[24] D. Edidin,et al. Characteristic classes in the Chow ring , 1994 .
[25] Angelo Vistoli. Equivariant Grothendieck groups and equivariant Chow groups , 1992 .
[26] G. Ellingsrud,et al. On the Chow Ring of a Geometric Quotient , 1989 .
[27] R. Thomason. XX. Algebraic K-Theory of Group Scheme Actions , 1988 .