Roughness and topology of ultra-hydrophobic surfaces

Ultra-hydrophobic surfaces have considerable technological potential for various applications due to their extreme water repellent properties. When water contacts such surfaces, contact angles approaching 180° may be obtained. These surfaces owe their unique wetting properties to a subtle interplay between surface chemistry and mesoscopic topological structure. In this paper, we discuss the requirements regarding surface roughness for ultra-hydrophobicity. We demonstrate by numerical calculations of contact angles on idealized surfaces that the topological nature of the surface roughness has a major influence on the water repellency of hydrophobic surfaces. In order to validate this theory, we present an electrochemical method to experimentally determine important model parameters, characterizing the solid/liquid interface. Furthermore, we substantiate our theoretical findings with experimental data on contact angles on hydrophobic surfaces with well-characterized surface roughness and topology.

[1]  K. Ng,et al.  Stepwise adsorption of a long trichlorosilane and a short aminosilane , 2000 .

[2]  B. A. Pethica The contact angle equilibrium , 1977 .

[3]  W. Zisman,et al.  Contact angle, wettability, and adhesion , 1964 .

[4]  P. Gennes Wetting: statics and dynamics , 1985 .

[5]  R. G. Cox The spreading of a liquid on a rough solid surface , 1983, Journal of Fluid Mechanics.

[6]  Akira Fujishima,et al.  Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate , 1999 .

[7]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[8]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .

[9]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .

[10]  Rulon E. Johnson Conflicts between Gibbsian Thermodynamics and Recent Treatments of Interfacial Energies in Solid-Liquid-Vapor , 1959 .

[11]  A. Amirfazli,et al.  Line Tension Measurements through Drop Size Dependence of Contact Angle. , 1998, Journal of colloid and interface science.

[12]  J. Stover Optical Scattering: Measurement and Analysis , 1990 .

[13]  Gershon Wolansky,et al.  Apparent contact angles on rough surfaces: the Wenzel equation revisited , 1999 .

[14]  A. Marmur Line tension effect on contact angles: Axisymmetric and cylindrical systems with rough or heterogeneous solid surfaces , 1998 .

[15]  R. Lipowsky,et al.  Contact Angles on Heterogeneous Surfaces: A New Look at Cassie's and Wenzel's Laws , 1998, cond-mat/9809089.

[16]  David J. Whitehouse,et al.  Handbook of Surface Metrology , 2023 .

[17]  J. Bennett,et al.  Introduction to Surface Roughness and Scattering , 1999 .

[18]  Gunther Notni,et al.  Analysis of white light interferograms using wavelet methods , 1998 .

[19]  Wei Chen,et al.  Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples , 1999 .

[20]  F. E. Bartell,et al.  The Effect of Surface Roughness on Apparent Contact Angles and on Contact Angle Hysteresis. I. The system Paraffin–Water–Air , 1953 .

[21]  Rolf E. Hummel,et al.  Thin films for optical coatings , 1995 .

[22]  Randy D. Hazlett,et al.  Fractal applications: Wettability and contact angle , 1990 .

[23]  C. Ruppe,et al.  Roughness analysis of optical films and substrates by atomic force microscopy , 1996 .

[24]  W. Barthlott,et al.  Lotus-Effekt und Autolack: Die Selbstreinigungsfähigkeit mikrostrukturierter Oberflächen , 1998 .