The complexity of the temporal logic with "until" over general linear time

It is shown that the decision problem for the temporal logic with the strict until operator over general linear time is PSPACE-complete. This shows that it is no harder to reason with arbitrary linear orderings than with discrete linear time temporal logics. New techniques are used to give a PSPACE procedure for the logic.

[1]  Alexander Moshe Rabinovich,et al.  On the Decidability of Continuous Time Specification Formalisms , 1998, J. Log. Comput..

[2]  Zohar Manna,et al.  Temporal Verification of Simulation and Refinement , 1993, REX School/Symposium.

[3]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[4]  Dov M. Gabbay,et al.  Temporal logic (vol. 1): mathematical foundations and computational aspects , 1994 .

[5]  H. Rasiowa,et al.  Logic at work : essays dedicated to the memory of Helena Rasiowa , 1999 .

[6]  A. Prasad Sistla,et al.  Reasoning in a Restricted Temporal Logic , 1993, Inf. Comput..

[7]  M. W. Shields An Introduction to Automata Theory , 1988 .

[8]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[9]  Yde Venema,et al.  A modal logic of relations , 1999 .

[10]  Larry J. Stockmeyer,et al.  Improved upper and lower bounds for modal logics of programs , 1985, STOC '85.

[11]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[12]  Albert R. Meyer,et al.  WEAK MONADIC SECOND ORDER THEORY OF SUCCESSOR IS NOT ELEMENTARY-RECURSIVE , 1973 .

[13]  Mark Reynolds,et al.  An axiomatization for until and since over the reals without the IRR rule , 1992, Stud Logica.

[14]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[15]  Jaakko Hintikka,et al.  Time And Modality , 1958 .

[16]  John P. Burgess,et al.  The decision problem for linear temporal logic , 1985, Notre Dame J. Formal Log..

[17]  Amir Pnueli,et al.  A really abstract concurrent model and its temporal logic , 1986, POPL '86.

[18]  Maarten Marx,et al.  The Mosaic Method for Temporal Logics , 2000, TABLEAUX.

[19]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[20]  Abraham Robinson,et al.  Elementary properties of ordered abelian groups , 1960 .

[21]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[22]  H. Läuchli,et al.  On the elementary theory of linear order , 1966 .

[23]  Mark Reynolds,et al.  A Decidable Temporal Logic of Parallelism , 1997, Notre Dame J. Formal Log..

[24]  D. Gabbay,et al.  Temporal Logic Mathematical Foundations and Computational Aspects , 1994 .

[25]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[26]  P. Boas Machine models and simulations , 1991 .

[27]  D. Gabbay,et al.  Temporal expressive completeness in the presence of gaps , 1993 .

[28]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[29]  Larry Joseph Stockmeyer,et al.  The complexity of decision problems in automata theory and logic , 1974 .

[30]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[31]  L. Csirmaz,et al.  Logic Colloquium '92 , 1995 .

[32]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[33]  Maarten Marx,et al.  Mosaics and step-by-step. Remarks on “A modal logic of relations” , 1999 .

[34]  Vaughan R. Pratt,et al.  Models of program logics , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[35]  A. Nakamura,et al.  On the size of refutation Kripke models for some linear modal and tense logics , 1980 .

[36]  Peter van Emde Boas,et al.  Machine Models and Simulation , 1990, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[37]  John P. Burgess,et al.  Axioms for tense logic. I. "Since" and "until" , 1982, Notre Dame J. Formal Log..

[38]  Szabolcs Mikulás,et al.  Mosaics and step-by-step. , 1999 .

[39]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .