Evolution of species-specific cuticular hydrocarbon patterns in Formica ants

A comparison of the cuticular hydrocarbon profiles of thirteen sympatric species of Formica ants from Finland, along with a subset of five species from the British Isles, was conducted. This permitted a comparison of the evolution of these profiles within a single genus and the stability of these profiles over large geographical and evolutionary distances. The study indicated that species-specific hydrocarbon profiles remained remarkably stable between Finland and the British Isles and were not influenced by ecological factors such as soil or vegetation types. This stability allowed candidate cuticular hydrocarbons or groups of hydrocarbons to be identified that may constitute species-specific recognition cues in these ants. In Formica, cuticular hydrocarbon composition has evolved down two distinct paths, either elevated production of Z-9-alkenes or the production of various dimethylalkanes. Evolution of hydrocarbons can be predicted for the other five Formica species for which the cuticular profiles are known. The Z-9-alkenes, dienes, and various distinctive combinations of dimethylalkanes can be used as unique species recognition cues in the Formica ants and this parallels the evolution of species-specific cuticular hydrocarbon composition in the Drosophila flies. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95, 131–140.

[1]  S. Turillazzi,et al.  Cuticular Hydrocarbons of Polistes dominulus as a Biogeographic Tool: A Study of Populations from the Tuscan Archipelago and Surrounding Areas , 2004, Journal of Chemical Ecology.

[2]  G. A. Kerkut,et al.  Comprehensive insect physiology, biochemistry, and pharmacology , 1985 .

[3]  G. J. Blomquist,et al.  Ecological, behavioral, and biochemical aspects of insect hydrocarbons. , 2005, Annual review of entomology.

[4]  J. K. Phillips,et al.  Internest aggression and identification of possible nestmate discrimination pheromones in polygynous antFormica montana , 1990, Journal of Chemical Ecology.

[5]  Kenneth H. Lockey Insect hydrocarbon classes: Implications for chemotaxonomy , 1991 .

[6]  J. Jallon,et al.  Control of female pheromones in Drosophila melanogaster by homeotic genes. , 2001, Genetical research.

[7]  P. Pamilo,et al.  Recent speciation in the Formica rufa group ants (Hymenoptera, Formicidae): inference from mitochondrial DNA phylogeny. , 2004, Molecular phylogenetics and evolution.

[8]  A. Lenoir,et al.  Chemistry of the postpharyngeal gland secretion and its implication for the phylogeny of IberianCataglyphis species (Hymenoptera: Formicidae) , 1996, CHEMOECOLOGY.

[9]  Tadao Matsumoto,et al.  Phylogenetic Comparison of Endosymbionts with Their Host Ants Based on Molecular Evidence , 1999 .

[10]  V. Soroker,et al.  The biosynthesis of Dufour's gland constituents in queens of the honeybee (Apis mellifera) , 1997, Invertebrate Neuroscience.

[11]  David J. Lohman,et al.  Convergence of chemical mimicry in a guild of aphid predators , 2006 .

[12]  J. Reinhard,et al.  Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data , 2001, Insectes Sociaux.

[13]  Collingwood.,et al.  The Formicidae (Hymenoptera) of Fennoscandia and Denmark , 1979 .

[14]  L. L. Jackson,et al.  Comparative analysis of cuticular hydrocarbons in the drosophila virilis species group , 1986 .

[15]  P. Capy,et al.  Variations of male cuticular hydrocarbons with geoclimatic variables: an adaptative mechanism in Drosophila melanogaster? , 2004, Genetica.

[16]  Dominique Fresneau,et al.  A multidisciplinary approach to discriminating different taxa in the species complex Pachycondyla villosa (Formicidae) , 2002 .

[17]  J. Ferveur Cuticular Hydrocarbons: Their Evolution and Roles in Drosophila Pheromonal Communication , 2005, Behavior genetics.

[18]  C. Errard,et al.  Induced mimicry of colony odors in ants , 1991, Journal of Chemical Ecology.

[19]  A. Bagnères,et al.  PLASTICITY OF THE CUTICULAR HYDROCARBON PROFILE OF THE SLAVE-MAKING ANT POLYERGUS RUFESCENS DEPENDING ON THE SOCIAL ENVIRONMENT , 1997 .

[20]  M. Elgar,et al.  The mode of pheromone evolution: evidence from bark beetles , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[21]  R. Chapman,et al.  Use of cuticular lipids in grasshopper taxonomy: A study of variation in Schistocerca shoshone (Thomas) , 1995 .

[22]  Matthew F. Sledge,et al.  Worker rank, reproductive status and cuticular hydrocarbon signature in the ant, Pachycondyla cf. inversa , 2002, Behavioral Ecology and Sociobiology.

[23]  Anna V. Goropashnaya,et al.  Phylogeographic Structure and Genetic Variation in Formica Ants , 2003 .

[24]  B. Bolton A New General Catalogue of the Ants of the World , 1995 .

[25]  R. Yamaoka,et al.  Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae) , 2004 .

[26]  T. Akino Cuticular hydrocarbons of Formica truncorum (Hymenoptera: Formicidae): Description of new very long chained hydrocarbon components , 2006 .

[27]  A. Rooney,et al.  Evolution of moth sex pheromones via ancestral genes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  P. Pamilo,et al.  Evolution of nesting strategies of ants: genetic evidence from different population types of Formica ants , 1984 .

[29]  E. Morgan,et al.  Insect chemical communication: Pheromones and exocrine glands of ants , 1993, CHEMOECOLOGY.

[30]  K. Dettner Chemosystematics and evolution of beetle chemical defenses , 1987 .

[31]  P. Pamilo,et al.  Genetic differentiation in sympatric wood ants, Formica rufa and F. polyctena , 2004, Insectes Sociaux.

[32]  W. Czechowski Intraspecific conflict in Formica exsecta Nyl. (Hymenoptera, Formicidae). , 1990 .

[33]  R. Yamaoka,et al.  Intraspecific Variation of Cuticular Hydrocarbon Composition in Formica japonica Motschoulsky (Hymenoptera: Formicidae) , 2002, Zoological science.

[34]  P. Neumann,et al.  Nestmate recognition and the genetic gestalt in the mound-building ant Formica polyctena , 1997, Insectes Sociaux.

[35]  P. Uva,et al.  Colonial and geographic variations in agonistic behaviour, cuticular hydrocarbons and mtDNA of Italian populations of Reticulitermes lucifugus (Isoptera, Rhinotermitidae) , 2004, Insectes Sociaux.

[36]  J. David,et al.  VARIATIONS IN CUTICULAR HYDROCARBONS AMONG THE EIGHT SPECIES OF THE DROSOPHILA MELANOGASTER SUBGROUP , 1987, Evolution; international journal of organic evolution.