Computation of two-electron Gaussian integrals for wave functions including the correlation factor r12exp(−γr122)

[1]  Wim Klopper,et al.  Explicitly correlated second-order Møller–Plesset methods with auxiliary basis sets , 2002 .

[2]  T. Helgaker,et al.  Second-order Møller–Plesset perturbation theory with terms linear in the interelectronic coordinates and exact evaluation of three-electron integrals , 2002 .

[3]  T. Helgaker,et al.  Efficient evaluation of one-center three-electron Gaussian integrals , 2001 .

[4]  P. Taylor,et al.  Symmetry-adapted integrals over many-electron basis functions and operators , 2001 .

[5]  P. Taylor,et al.  Molecular integrals over Gaussian-type geminal basis functions , 1997 .

[6]  P. Taylor,et al.  Accurate quantum‐chemical calculations: The use of Gaussian‐type geminal functions in the treatment of electron correlation , 1996 .

[7]  Wim Klopper,et al.  Computation of some new two-electron Gaussian integrals , 1992 .

[8]  Trygve Helgaker,et al.  On the evaluation of derivatives of Gaussian integrals , 1992 .

[9]  H. Taylor,et al.  A classical mechanical analysis of molecular motions. Resonances in transition‐state spectra of FH−2, FDH−, and FD−2 , 1992 .

[10]  W. Kutzelnigg,et al.  Møller-plesset calculations taking care of the correlation CUSP , 1987 .

[11]  Werner Kutzelnigg,et al.  r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l , 1985 .

[12]  R. Hill,et al.  Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method , 1985 .

[13]  E. Davidson,et al.  One- and two-electron integrals over cartesian gaussian functions , 1978 .

[14]  C. Schwartz,et al.  Importance of Angular Correlations between Atomic Electrons , 1962 .

[15]  S. F. Boys Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.