Three-dimensional IR imaging with uncooled GaN photodiodes using nondegenerate two-photon absorption.

We utilize the recently demonstrated orders of magnitude enhancement of extremely nondegenerate two-photon absorption in direct-gap semiconductor photodiodes to perform scanned imaging of three-dimensional (3D) structures using IR femtosecond illumination pulses (1.6 µm and 4.93 µm) gated on the GaN detector by sub-gap, femtosecond pulses. While transverse resolution is limited by the usual imaging criteria, the longitudinal or depth resolution can be less than a wavelength, dependent on the pulsewidths in this nonlinear interaction within the detector element. The imaging system can accommodate a wide range of wavelengths in the mid-IR and near-IR without the need to modify the detection and imaging systems.

[1]  Piotr Martyniuk,et al.  MWIR barrier detectors versus HgCdTe photodiodes , 2015 .

[2]  Weida Hu,et al.  128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. , 2014, Optics letters.

[3]  Ernest W Chang,et al.  Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics. , 2014, Optics express.

[4]  M. Fejer,et al.  Spectral response of an upconversion detector and spectrometer. , 2013, Optics express.

[5]  Angela B. Seddon,et al.  Mid‐infrared (IR) – A hot topic: The potential for using mid‐IR light for non‐invasive early detection of skin cancer in vivo , 2013 .

[6]  M. Fejer,et al.  Ultralow noise up-conversion detector and spectrometer for the telecom band. , 2013, Optics express.

[7]  Jeppe Seidelin Dam,et al.  Room-temperature mid-infrared single-photon spectral imaging , 2012, Nature Photonics.

[8]  A. Michel,et al.  Mid-infrared (λ = 8.4–9.9 μm) light scattering from porcine tissue , 2012 .

[9]  R. Bhargava,et al.  Label-Free Biomedical Imaging With Mid-IR Spectroscopy , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  E. V. Van Stryland,et al.  Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited]. , 2011, Optics express.

[11]  C R Phillips,et al.  Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. , 2011, Optics express.

[12]  David J. Hagan,et al.  Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption , 2011 .

[13]  Martin Richardson,et al.  Nondestructive 3-D imaging of femtosecond laser written volumetric structures using optical coherence microscopy , 2011 .

[14]  C. Langrock,et al.  Single-photon detection at 1550 nm via upconversion using a tunable long-wavelength pump source , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[15]  Kun Huang,et al.  Temporal and spectral control of single-photon frequency upconversion for pulsed radiation , 2010 .

[16]  Iam-Choon Khoo,et al.  Nonlinear refraction and absorption: mechanisms and magnitudes , 2010 .

[17]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[18]  A. Rogalski,et al.  Third-generation infrared photodetector arrays , 2009 .

[19]  E. Rosencher,et al.  Infrared quantum counting by nondegenerate two photon conductivity in GaAs , 2009 .

[20]  N. Gisin,et al.  Tunable upconversion photon detector , 2008, 0807.3399.

[21]  D. Delpy,et al.  Mid-Infrared Optical Coherence Tomography: Application in Tissue Engineering , 2006 .

[22]  Yang Wang,et al.  Multi-spectral mid-infrared laser stand-off imaging. , 2005, Optics express.

[23]  F. Wong,et al.  Efficient single-photon counting at 1.55 microm by means of frequency upconversion. , 2004, Optics letters.

[24]  Bujin Guo,et al.  Laser-based mid-infrared reflectance imaging of biological tissues. , 2004, Optics express.

[25]  Jeffrey M Roth,et al.  Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube. , 2002, Optics letters.

[26]  D. C. Hutchings,et al.  Nondegenerate two-photon absorption in zinc blende semiconductors , 1992 .

[27]  E. W. Stryland,et al.  Energy band-gap dependence of two-photon absorption. , 1985, Optics letters.

[28]  Brian S. Wherrett,et al.  Scaling rules for multiphoton interband absorption in semiconductors , 1984 .

[29]  E. W. Stryland,et al.  Energy bandgap dependence of two-photon absorption , 2002 .

[30]  Mansoor Sheik-Bahae,et al.  Dispersion of Bound Electronic Nonlinear Refraction , 1991 .