An explicit solution to polynomial matrix right coprime factorization with application in eigenstructure assignment

In this paper, an explicit solution to polynomial matrix right coprime factorization of input-state transfer function is obtained in terms of the Krylov matrix and the Pseudo-controllability indices of the pair of coefficient matrices. The proposed approach only needs to solve a series of linear equations. Applications of this solution to a type of generalized Sylvester matrix equations and the problem of parametric eigenstructure assignment by state feedback are investigated. These new solutions are simple, they possess better structural properties and are very convenient to use. An example shows the effect of the proposed results.

[1]  Guang-Ren Duan,et al.  Robust pole assignment in descriptor linear systems via state feedback , 2001, 2001 European Control Conference (ECC).

[2]  E. Armstrong Coprime factorization approach to robust stabilization of control structures interaction evolutionary model , 1994 .

[3]  R. Patton,et al.  Robust fault detection using Luenberger-type unknown input observers-a parametric approach , 2001 .

[4]  K. Ohishi,et al.  High performance ultra-low speed servo system based on doubly coprime factorization and instantaneous speed observer , 1996 .

[5]  Guang-Ren Duan RIGHT COPRIME FACTORIZATIONS FOR SINGLE-INPUT DESCRIPTOR LINEAR SYSTEMS: A SIMPLE NUMERICALLY STABLE ALGORITHM , 2008 .

[6]  Jie Chen,et al.  Design of unknown input observers and robust fault detection filters , 1996 .

[7]  R. J. Patton,et al.  Robust fault detection in linear systems using Luenberger observers , 1998 .

[9]  S. Bingulac,et al.  On admissibility of pseudoobservability and pseudocontrollability indexes , 1987 .

[10]  Stanoje Bingulac,et al.  On coprime factorization and minimal realization of transfer function matrices using the pseudo-observability concept , 1994 .

[11]  Thomas Kailath,et al.  Linear Systems , 1980 .

[12]  G. Duan Solutions of the equation AV+BW=VF and their application to eigenstructure assignment in linear systems , 1993, IEEE Trans. Autom. Control..

[13]  João Carlos Basilio,et al.  An algorithm for coprime matrix fraction description using sylvester matrices , 1997 .

[14]  R. V. Patel,et al.  Computation of matrix fraction descriptions of linear time-invariant systems , 1981 .

[15]  Michael Green,et al.  H8 controller synthesis by J-lossless coprime factorization , 1992 .

[16]  Guang-Ren Duan,et al.  Robust eigenstructure assignment via dynamical compensators, , 1993, Autom..

[17]  G.-R. Duan Right coprime factorisations using system upper Hessenberg forms - the multi-input system case , 2001 .

[18]  S. Bhattacharyya,et al.  Pole assignment via Sylvester's equation , 1982 .

[19]  S. Bingulac,et al.  On the equivalence between MFD models and pseudo-observable forms of MIMO systems , 1998 .