Folded Plate Structures Undergoing Large Membrane and Transverse Bending Deformations

A shell element that is well suited for the analysis of folded plate and shell structures is presented. In contrast to unfolded plates, the walls of folded plates can undergo substantial amount of transverse as well as membrane bending. For instance, in a rotor blade, the flange and web of a spar undergo transverse and membrane bending under flap bending, respectively, and the reverse occurs under lag bending. Therefore, a suitable shell-element technology should accurately model the transverse-bending and membrane-bending deformations, while maintaining kinematic compatibility along the element edges. The new shell element incorporates the Assumed Natural DEviatoric Strain (ANDES) and anisoparametric element formulations. The element robustness is established by comparisons with experimental measurements and other numerical predictions.

[1]  Suha Oral,et al.  A shear-flexible facet shell element for large deflection and instability analysis , 1991 .

[2]  F. Brezzi,et al.  On drilling degrees of freedom , 1989 .

[3]  Carlos A. Felippa,et al.  Membrane triangles with corner drilling freedoms III: implementation and performance evaluation , 1992 .

[4]  Manabendra Das,et al.  Aeroelastic Analysis of Rotor Blades Using Three Dimensional Flexible Multibody Dynamic Analysis , 2007 .

[5]  Thomas J. R. Hughes,et al.  Numerical assessment of some membrane elements with drilling degrees of freedom , 1995 .

[6]  Carlos E. S. Cesnik,et al.  VABS: A New Concept for Composite Rotor Blade Cross-Sectional Modeling , 1995 .

[7]  T. Hughes,et al.  A three-node mindlin plate element with improved transverse shear , 1985 .

[8]  E. Smith,et al.  Formulation and evaluation of an analytical model for composite box-beams , 1991 .

[9]  D. J. Allman,et al.  Evaluation of the constant strain triangle with drilling rotations , 1988 .

[10]  I. Chopra,et al.  Thin-walled composite beams under bending, torsional, and extensional loads , 1990 .

[11]  M. Fortin,et al.  ERROR ANALYSIS OF MIXED-INTERPOLATED ELEMENTS FOR REISSNER-MINDLIN PLATES , 1991 .

[12]  D. Allman A compatible triangular element including vertex rotations for plane elasticity analysis , 1984 .

[13]  Ted Belytschko,et al.  Locking and shear scaling factors in C° bending elements , 1986 .

[14]  Alan D. Stemple,et al.  Finite-Element Model for Composite Beams with Arbitrary Cross-Sectional Warping , 1988 .

[15]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[16]  J. J. Traybar,et al.  An Experimental Study of the Nonlinear Stiffness of a Rotor Blade Undergoing Flap, Lag and Twist Deformations , 1975 .

[17]  M. Turner Stiffness and Deflection Analysis of Complex Structures , 1956 .

[18]  P. Lardeur,et al.  A discrete shear triangular nine D.O.F. element for the analysis of thick to very thin plates , 1989 .

[19]  C. Felippa A study of optimal membrane triangles with drilling freedoms , 2003 .

[20]  E. Madenci,et al.  Nonlinear thermoelastic analysis of composite panels under non-uniform temperature distribution , 2000 .

[21]  John Dugundji,et al.  Experiments and analysis for composite blades under large deflections. II - Dynamic behavior , 1990 .

[22]  Alan D. Stemple,et al.  A finite element model for composite beams undergoing large deflection with arbitrary cross‐sectional warping , 1989 .

[23]  Ferdinando Auricchio,et al.  A triangular thick plate finite element with an exact thin limit , 1995 .

[24]  P. Lardeur,et al.  Composite plate analysis using a new discrete shear triangular finite element , 1989 .

[25]  S. B. Dong,et al.  On a hierarchy of conforming timoshenko beam elements , 1981 .

[26]  Carlos A. Felippa,et al.  Membrane triangles with corner drilling freedoms II: the ANDES element , 1992 .