Recent progress and prospects of terahertz CMOS

[1]  M. Fujishima,et al.  Characterization of wideband decoupling power line with extremely low characteristic impedance for millimeter-wave CMOS circuits , 2015, Proceedings of the 2015 International Conference on Microelectronic Test Structures.

[2]  Ehsan Afshari,et al.  A 283-to-296GHz VCO with 0.76mW peak output power in 65nm CMOS , 2012, 2012 IEEE International Solid-State Circuits Conference.

[3]  Omeed Momeni A 260GHz amplifier with 9.2dB gain and −3.9dBm saturated power in 65nm CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[4]  Ali M. Niknejad,et al.  A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[5]  Kei Sakaguchi,et al.  Millimeter-wave Evolution for 5G Cellular Networks , 2014, IEICE Trans. Commun..

[6]  Zheng Wang,et al.  A 210GHz fully integrated differential transceiver with fundamental-frequency VCO in 32nm SOI CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[7]  John Wood,et al.  Modeling and Characterization of RF and Microwave Power FETs , 2007 .

[8]  Wei Meng Lim,et al.  A 239–281 GHz CMOS Receiver With On-Chip Circular-Polarized Substrate Integrated Waveguide Antenna for Sub-Terahertz Imaging , 2014, IEEE Transactions on Terahertz Science and Technology.

[9]  M. Fujishima,et al.  Process parameter calibration for millimeter-wave CMOS back-end device design with electromagnetic field analysis , 2014, 2014 International Conference on Microelectronic Test Structures (ICMTS).

[10]  Sorin P. Voinigescu,et al.  High-Frequency Integrated Circuits , 2013 .

[11]  Ehsan Afshari,et al.  A 105-GHz VCO With 9.5% Tuning Range and 2.8-mW Peak Output Power in a 65-nm Bulk CMOS Process , 2014, IEEE Transactions on Microwave Theory and Techniques.

[12]  Ehsan Afshari,et al.  A 260GHz broadband source with 1.1mW continuous-wave radiated power and EIRP of 15.7dBm in 65nm CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[13]  Lin Sun,et al.  Feedback Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  C. Cheng,et al.  Neutralization and unilateralization , 1955, IRE Transactions on Circuit Theory.

[15]  Minoru Fujishima,et al.  High-Attenuation Power Line for Wideband Decoupling , 2009, IEICE Trans. Electron..

[16]  Patrick Roblin Nonlinear RF circuits and nonlinear vector network analyzers : interactive measurement and design techniques , 2011 .

[17]  Madhu Gupta,et al.  Power gain in feedback amplifiers, a classic revisited , 1992 .

[18]  Ehsan Afshari,et al.  25.5 A 320GHz phase-locked transmitter with 3.3mW radiated power and 22.5dBm EIRP for heterodyne THz imaging systems , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[19]  Ali M. Niknejad,et al.  A digitally modulated mm-Wave cartesian beamforming transmitter with quadrature spatial combining , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[20]  Ali M. Niknejad,et al.  A 240GHz wideband QPSK transmitter in 65nm CMOS , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[21]  K. Takano,et al.  Design of well-behaved low-loss millimetre-wave CMOS transmission lines , 2014, 2014 IEEE 18th Workshop on Signal and Power Integrity (SPI).

[22]  A. P. Stern,et al.  Internal Feedback and Neutralization of Transistor Amplifiers , 1955, Proceedings of the IRE.

[23]  M. Fujishima,et al.  Systematic calibration procedure of process parameters for electromagnetic field analysis of millimeter-wave CMOS devices , 2015, Proceedings of the 2015 International Conference on Microelectronic Test Structures.