Integration of microstructural and functional aspects of human somatosensory areas 3a, 3b, and 1 on the basis of a computerized brain atlas

[1]  K Amunts,et al.  A stereological approach to human cortical architecture: identification and delineation of cortical areas , 2000, Journal of Chemical Neuroanatomy.

[2]  K. Zilles,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 2. Spatial Normalization to Standard Anatomical Space , 2000, NeuroImage.

[3]  P E Roland,et al.  Somatosensory areas in man activated by moving stimuli: cytoarchitectonic mapping and PET , 2000, Neuroreport.

[4]  B. Gulyás,et al.  Neuronal correlates of real and illusory contour perception: functional anatomy with PET , 1999, The European journal of neuroscience.

[5]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[6]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[7]  P. Roland,et al.  Estimation of the Probabilities of 3D Clusters in Functional Brain Images , 1998, NeuroImage.

[8]  J. Kaas,et al.  A histologically visible representation of the fingers and palm in primate area 3b and its immutability following long-term deafferentations. , 1998, Cerebral cortex.

[9]  J C Mazziotta,et al.  Automated image registration: II. Intersubject validation of linear and nonlinear models. , 1998, Journal of computer assisted tomography.

[10]  T Schormann,et al.  Three‐Dimensional linear and nonlinear transformations: An integration of light microscopical and MRI data , 1998, Human brain mapping.

[11]  Karl Zilles,et al.  Limitations of the principal-axes theory , 1997, IEEE Transactions on Medical Imaging.

[12]  J. Ashburner,et al.  Multimodal Image Coregistration and Partitioning—A Unified Framework , 1997, NeuroImage.

[13]  D. V. Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system , 1997, Nature.

[14]  L. White,et al.  Structure of the human sensorimotor system. I: Morphology and cytoarchitecture of the central sulcus. , 1997, Cerebral cortex.

[15]  Karl Zilles,et al.  A New Approach to Fast Elastic Alignment with Applications to Human Brain , 1996, VBC.

[16]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[17]  R. Romo,et al.  Representation of moving tactile stimuli in the somatic sensory cortex of awake monkeys. , 1995, Journal of neurophysiology.

[18]  Karl Zilles,et al.  Statistics of deformations in histology and application to improved alignment with MRI , 1995, IEEE Trans. Medical Imaging.

[19]  K. Zilles,et al.  Brain atlases - a new research tool , 1994, Trends in Neurosciences.

[20]  K. Zilles,et al.  Human brain atlas: For high‐resolution functional and anatomical mapping , 1994, Human brain mapping.

[21]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[22]  T. Schormann,et al.  Alignment of 3‐D brain data sets originating from MR and histology , 1993 .

[23]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[24]  K Zilles,et al.  A quantitative approach to cytoarchitectonics: Analysis of structural inhomogeneities in nervous tissue using an image analyser , 1990, Journal of microscopy.

[25]  J. Kaas,et al.  Variability in hand surface representations in areas 3b and 1 in adult owl and squirrel monkeys , 1987, The Journal of comparative neurology.

[26]  J. Kaas,et al.  Representations of the face, teeth and oral cavity in areas 3b and 1 of somatosensory cortex in squirrel monkeys , 1986, Brain Research.

[27]  E P Gardner,et al.  Objective classification of motion- and direction-sensitive neurons in primary somatosensory cortex of awake monkeys. , 1986, Journal of neurophysiology.

[28]  M Sur,et al.  Modular distribution of neurons with slowly adapting and rapidly adapting responses in area 3b of somatosensory cortex in monkeys. , 1984, Journal of neurophysiology.

[29]  B. Merker Silver staining of cell bodies by means of physical development , 1983, Journal of Neuroscience Methods.

[30]  J. Kaas,et al.  Representations of the body surface in areas 3b and 1 of postcentral parietal cortex of cebus monkeys , 1983, Brain Research.

[31]  J. Kaas,et al.  Representations of the body surface in cortical areas 3b and 1 of squirrel monkeys: Comparisons with other primates , 1982, The Journal of comparative neurology.

[32]  Karl Zilles,et al.  Estimation of volume fractions in nervous tissue with an image analyzer , 1982, Journal of Neuroscience Methods.

[33]  H. Duvernoy,et al.  Cortical blood vessels of the human brain , 1981, Brain Research Bulletin.

[34]  J. Kaas,et al.  Modular segregation of functional cell classes within the postcentral somatosensory cortex of monkeys. , 1981, Science.

[35]  M. Sur,et al.  Representations of the body surface in postcentral parietal cortex of Macaca fascicularis , 1980, The Journal of comparative neurology.

[36]  E. P. Gardner,et al.  Neuronal mechanisms underlying direction sensitivity of somatosensory cortical neurons in awake monkeys. , 1980, Journal of neurophysiology.

[37]  E. P. Gardner,et al.  A quantitative analysis of responses of direction-sensitive neurons in somatosensory cortex of awake monkeys. , 1980, Journal of neurophysiology.

[38]  J. Kaas,et al.  Multiple representations of the body within the primary somatosensory cortex of primates. , 1979, Science.

[39]  J Hyvärinen,et al.  Receptive field integration and submodality convergence in the hand area of the post‐central gyrus of the alert monkey. , 1978, The Journal of physiology.

[40]  E. G. Jones,et al.  Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys , 1978, The Journal of comparative neurology.

[41]  J. Kaas,et al.  Double representation of the body surface within cytoarchitectonic area 3b and 1 in “SI” in the owl monkey (aotus trivirgatus) , 1978, The Journal of comparative neurology.

[42]  D. Pandya,et al.  Cortico‐cortical connections of somatic sensory cortex (areas 3, 1 and 2) in the rhesus monkey , 1978, The Journal of comparative neurology.

[43]  Mountcastle Vb,et al.  The cytoarchitecture of the postcentral gyrus of the monkey Macaca mulatta. , 1959 .

[44]  G. Bonin,et al.  The isocortex of man , 1951 .

[45]  K. Lashley,et al.  The cytoarchitecture of the cerebral cortex of ateles: A critical examination of architectonic studies , 1946, The Journal of comparative neurology.

[46]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[47]  I. H. Coriat,et al.  Histological Studies on the Localization of Cerebral Function , 1906 .