A Variational Approach to the Stability of Periodic Peakons

Abstract The peakons are peaked traveling wave solutions of an integrable shallow water equation. We present a variational proof of their stability.

[1]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[2]  Jonatan Lenells,et al.  Stability of periodic peakons , 2004 .

[3]  A. Constantin,et al.  Global Weak Solutions for a Shallow Water Equation , 2000 .

[4]  Adrian Constantin,et al.  A shallow water equation on the circle , 1999 .

[5]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[6]  H. Dai Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod , 1998 .

[7]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[8]  R. Johnson,et al.  Camassa–Holm, Korteweg–de Vries and related models for water waves , 2002, Journal of Fluid Mechanics.

[9]  W. Strauss,et al.  Stability of peakons , 2000 .

[10]  J. Escher,et al.  Wave breaking for nonlinear nonlocal shallow water equations , 1998 .

[11]  G. B. Whitham,et al.  Linear and Nonlinear Waves: Whitham/Linear , 1999 .

[12]  Gerard Misio łek A shallow water equation as a geodesic flow on the Bott-Virasoro group , 1998 .

[13]  P. Olver,et al.  Well-posedness and Blow-up Solutions for an Integrable Nonlinearly Dispersive Model Wave Equation , 2000 .

[14]  A. Constantin,et al.  TOPICAL REVIEW: On the geometric approach to the motion of inertial mechanical systems , 2002 .

[15]  Dai Hui-hui,et al.  On the Cauchy Problem of the Camassa-Holm Equation , 2006 .

[16]  J. Escher,et al.  Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation , 1998 .

[17]  A. Constantin On the Cauchy Problem for the Periodic Camassa–Holm Equation , 1997 .

[18]  J. Escher,et al.  On the blow-up rate and the blow-up set of breaking waves for a shallow water equation , 2000 .