Foldwatch: using origami-inspired paper prototypes to explore the extension of output space in smartwatches

Smartwatches are highly portable, ubiquitous devices, allowing rich interaction at a small scale. However, the display size can hinder user engagement, limit information display, and presentation style. Most research focuses on exploring ways in which the interaction area of smartwatches can be extended, although this mainly entails simple fold-out displays or additional screens. Conversely, added weight and size can hinder the wearable experience. In response, we took inspiration from origami and explored the design space for new types of lightweight, highly foldable smartwatch, by developing complex paper-prototypes which demonstrate novel ways of extending screen space. We collected data on potential input and output interaction with complex folded smartwatch displays during workshops with expert and non-expert users, discovering application ideas and additional input/output functionality. These insights were used to produce and evaluate a concept video for the FoldWatch prototype.

[1]  Jürgen Steimle,et al.  Foldio: Digital Fabrication of Interactive and Shape-Changing Objects With Foldable Printed Electronics , 2015, UIST.

[2]  Gierad Laput,et al.  Expanding the input expressivity of smartwatches with mechanical pan, twist, tilt and click , 2014, CHI.

[3]  Mireia Fernández-Ardèvol,et al.  My Interests, My Activities: Learning from an Intergenerational Comparison of Smartwatch Use , 2017, HCI.

[4]  Roel Vertegaal,et al.  PaperFold: Evaluating Shape Changes for Viewport Transformations in Foldable Thin-Film Display Devices , 2015, Tangible and Embedded Interaction.

[5]  Jürgen Steimle,et al.  PrintScreen: fabricating highly customizable thin-film touch-displays , 2014, UIST.

[6]  Pattie Maes,et al.  Flexpad: highly flexible bending interactions for projected handheld displays , 2013, CHI.

[7]  Roel Vertegaal,et al.  Towards more paper-like input: flexible input devices for foldable interaction styles , 2008, UIST '08.

[8]  Marta E. Cecchinato,et al.  Smartwatches: the Good, the Bad and the Ugly? , 2015, CHI Extended Abstracts.

[9]  Blockin Towards High Quality Text Entry on Smartwatches , 2014 .

[10]  Daniel Vogel,et al.  Doppio: A Reconfigurable Dual-Face Smartwatch for Tangible Interaction , 2016, CHI.

[11]  Sriram Subramanian,et al.  Tilt displays: designing display surfaces with multi-axis tilting and actuation , 2012, Mobile HCI.

[12]  Roel Vertegaal,et al.  PaperTab: an electronic paper computer with multiple large flexible electrophoretic displays , 2013, CHI Extended Abstracts.

[13]  Seongcheol Kim,et al.  Consumer valuation of the wearables: The case of smartwatches , 2016, Comput. Hum. Behav..

[14]  Barbara S. Chaparro,et al.  Is Touch-Based Text Input Practical for a Smartwatch? , 2015, HCI.

[15]  Jie Qi,et al.  Animating paper using shape memory alloys , 2012, CHI.

[16]  Alex Olwal,et al.  WatchThru: Expanding Smartwatch Displays with Mid-air Visuals and Wrist-worn Augmented Reality , 2017, CHI.

[17]  Max Mühlhäuser,et al.  Xpaaand: interaction techniques for rollable displays , 2011, CHI.

[18]  D. Morgan The Focus Group Guidebook , 1997 .

[19]  Geehyuk Lee,et al.  SplitBoard: A Simple Split Soft Keyboard for Wristwatch-sized Touch Screens , 2015, CHI.

[20]  Jürgen Steimle,et al.  Flexy: Shape-Customizable, Single-Layer, Inkjet Printable Patterns for 1D and 2D Flex Sensing , 2017, TEI.

[21]  Stefan Schneegaß,et al.  GestureSleeve: using touch sensitive fabrics for gestural input on the forearm for controlling smartwatches , 2016, SEMWEB.

[22]  Scott E. Hudson,et al.  Foldable interactive displays , 2008, UIST '08.

[23]  Hendrik Witt,et al.  User Interfaces for Wearable Computers , 2008 .

[24]  Markus Löchtefeld,et al.  Morphees: toward high "shape resolution" in self-actuated flexible mobile devices , 2013, CHI.

[25]  Jun-ichiro Watanabe,et al.  Bookisheet: bendable device for browsing content using the metaphor of leafing through the pages , 2008, UbiComp.

[26]  Hendrik Witt,et al.  Preface , 2004, Molecular and Cellular Endocrinology.

[27]  Daniel Vogel,et al.  Cito: An Actuated Smartwatch for Extended Interactions , 2017, CHI.

[28]  Kentaro Go,et al.  Creating Interactive Flexible Surfaces with Origami Tessellations , 2014, CollabTech.

[29]  Sean White,et al.  Facet: a multi-segment wrist worn system , 2012, UIST.

[30]  Sandi Ljubic,et al.  Smartwatch as a remote server monitoring device: Implementation and interaction design , 2015, 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).

[31]  Philippa Mothersill,et al.  Awakened apparel: embedded soft actuators for expressive fashion and functional garments , 2014, TEI '14.

[32]  Yves Weinand,et al.  ORIGAMI - Folded Plate Structures, Architecture , 2008 .

[33]  Jun Mitani,et al.  A Method for Designing Crease Patterns for Flat-Foldable Origami with Numerical Optimization , 2011 .

[34]  Daniel M. Aukes,et al.  Self-folding origami: shape memory composites activated by uniform heating , 2014 .

[35]  Alireza Sahami Shirazi,et al.  Text Entry on Tiny QWERTY Soft Keyboards , 2015, CHI.

[36]  Akira Wakita,et al.  Electronic origami with the color-changing function , 2013, SMI '13.

[37]  Johannes Schöning,et al.  WatchMe: A Novel Input Method Combining a Smartwatch and Bimanual Interaction , 2015, CHI Extended Abstracts.

[38]  Roel Vertegaal,et al.  Organic user interfaces: designing computers in any way, shape, or form , 2007, CACM.

[39]  Hiroshi Ishii,et al.  Radical atoms: beyond tangible bits, toward transformable materials , 2012, INTR.

[40]  Basheer Tome,et al.  uniMorph: Fabricating Thin Film Composites for Shape-Changing Interfaces , 2015, UIST.

[41]  Jaime Teevan,et al.  WearWrite: Crowd-Assisted Writing from Smartwatches , 2016, CHI.

[42]  Edward Lank,et al.  Gestural Text Input Using a Smartwatch , 2016, AVI.

[43]  Gregory D. Abowd,et al.  TapSkin: Recognizing On-Skin Input for Smartwatches , 2016, ISS.

[44]  Scott P. Robertson,et al.  Proceedings of the SIGCHI Conference on Human Factors in Computing Systems , 1991 .

[45]  Johannes Schöning,et al.  Paddle: highly deformable mobile devices with physical controls , 2014, CHI Extended Abstracts.

[46]  Nikolaus F. Troje,et al.  Paper windows: interaction techniques for digital paper , 2005, CHI.

[47]  Hyuk‐Jun Kwon,et al.  Low‐Power Flexible Organic Light‐Emitting Diode Display Device , 2011, Advanced materials.

[48]  Ivan Poupyrev,et al.  Gummi: a bendable computer , 2004, CHI '04.

[49]  Yvonne Rogers,et al.  Fat Finger Worries: How Older and Younger Users Physically Interact with PDAs , 2005, INTERACT.

[50]  Hiroshi Ishii,et al.  jamSheets: thin interfaces with tunable stiffness enabled by layer jamming , 2014, TEI '14.

[51]  Dominique Tan,et al.  Projectagami: A Foldable Mobile Device with Shape Interactive Applications , 2015, CHI Extended Abstracts.

[52]  Xu Jia,et al.  How users manipulate deformable displays as input devices , 2010, CHI.

[53]  Kenton O'Hara,et al.  Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services , 2012 .

[54]  Marc Hassenzahl,et al.  Hedonic, Emotional, and Experiential Perspectives on Product Quality , 2006 .

[55]  Jürgen Steimle,et al.  FoldMe: interacting with double-sided foldable displays , 2012, Tangible and Embedded Interaction.

[56]  Michael Eisenberg,et al.  FoldMecha: Exploratory Design and Engineering of Mechanical Papercraft , 2017, Tangible and Embedded Interaction.

[57]  Miriam Sturdee,et al.  Analysis and Classification of Shape-Changing Interfaces for Design and Application-based Research , 2018, ACM Comput. Surv..

[58]  Myung-Ho Lee,et al.  18.4: A New Seamless Foldable OLED Display Composed of Multi Display Panels , 2010 .

[59]  Roel Vertegaal,et al.  Paperfold: a shape changing mobile device with multiple reconfigurable electrophoretic magnetic display tiles , 2014, CHI Extended Abstracts.

[60]  Akiya Kamimura,et al.  MimicTile: a variable stiffness deformable user interface for mobile devices , 2012, CHI.

[61]  Xu Sun,et al.  Sticky Actuator: Free-Form Planar Actuators for Animated Objects , 2015, TEI.