Design of an Intelligent Embedded System for Condition Monitoring of an Industrial Robot

........................................................................................................................... i ACKNOWLEDGEMENTS .................................................................................................. iii TABLE OF CONTENT ........................................................................................................ iv LIST OF FIGURES ............................................................................................................... x LIST OF TABLES ............................................................................................................... xv LIST OF ABBREVIATIONS ............................................................................................. xvi PUBLICATIONS AND AWARDS .................................................................................... xix CHAPTER

[1]  A. Harnoy,et al.  Bearing Design in Machinery: Engineering Tribology and Lubrication , 2002 .

[2]  Theodoros Loutas,et al.  Utilising the Wavelet Transform in Condition-Based Maintenance: A Review with Applications , 2012 .

[3]  Ming-Chyuan Lu,et al.  Application of backpropagation neural network for spindle vibration-based tool wear monitoring in micro-milling , 2011, The International Journal of Advanced Manufacturing Technology.

[4]  Rehman M. Khan Problem Solving and Data Analysis Using Minitab: A Clear and Easy Guide to Six Sigma Methodology , 2013 .

[5]  Guangjun Liu,et al.  Decentralised fault tolerance and fault detection of modular and reconfigurable robots with joint torque sensing , 2008, 2008 IEEE International Conference on Robotics and Automation.

[6]  Marcelo Lubaszewski,et al.  Design of an embedded system for the proactive maintenance of electrical valves , 2009, SBCCI.

[7]  Peter R.N. Childs,et al.  Mechanical Design Engineering Handbook , 2013 .

[8]  Guangjun Liu,et al.  Power Efficiency Estimation-Based Health Monitoring and Fault Detection of Modular and Reconfigurable Robot , 2011, IEEE Transactions on Industrial Electronics.

[9]  M. Salman Leong,et al.  Wavelet Analysis: Mother Wavelet Selection Methods , 2013 .

[10]  Ranjan Ganguli,et al.  Matrix Crack Detection in Thin-walled Composite Beam using Genetic Fuzzy System , 2005 .

[11]  Marek Krawczuk,et al.  The location of a concentrated mass on rectangular plates from measurements of natural vibrations , 2002 .

[12]  Robert Randall,et al.  Vibration–based Condition Monitoring , 2011 .

[13]  Stephen P. Radzevich,et al.  Dudley's Handbook of Practical Gear Design and Manufacture , 2012 .

[14]  Hee-Jun Kang,et al.  A Robust Fault Detection and Isolation Scheme for Robot Manipulators Based on Neural Networks , 2011, ICIC.

[15]  S. P. Harsha,et al.  ANN BASED FAULT DIAGNOSIS OF ROLLING ELEMENT BEARING USING TIME-FREQUENCY DOMAIN FEATURE , 2012 .

[16]  Xiaodong Cheng,et al.  Design of smart home remote monitoring system based on embedded system , 2011, 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering.

[17]  Daming Lin,et al.  A review on machinery diagnostics and prognostics implementing condition-based maintenance , 2006 .

[18]  Rolf Isermann,et al.  Model-based fault-detection and diagnosis - status and applications , 2004, Annu. Rev. Control..

[19]  T. A. Harris,et al.  Essential Concepts of Bearing Technology , 2006 .

[20]  P. Tse,et al.  Machine fault diagnosis through an effective exact wavelet analysis , 2004 .

[21]  Mats Henriksson On Noise Generation and Dynamic Transmission Error of Gears , 2009 .

[22]  Vincent Ogbonnah CONDITION MONITORING OF GEAR FAILURE WITH ACOUSTIC EMISSION , 2007 .

[23]  Jeremy Blum,et al.  Exploring Arduino: Tools and Techniques for Engineering Wizardry , 2013 .

[24]  Marios M. Polycarpou,et al.  Neural network based fault detection in robotic manipulators , 1998, IEEE Trans. Robotics Autom..

[25]  Siddharth Sharma,et al.  Application of Support Vector Machines for Damage Detection in Structures , 2009 .

[26]  Steven Y. Liang,et al.  BEARING CONDITION DIAGNOSTICS VIA VIBRATION AND ACOUSTIC EMISSION MEASUREMENTS , 1997 .

[27]  Robert B. Randall,et al.  Detection and diagnosis of incipient bearing failure in helicopter gearboxes , 2004 .

[28]  Robert X. Gao,et al.  From Fourier Transform to Wavelet Transform: A Historical Perspective , 2011 .

[29]  Christos Koulamas,et al.  Wireless Sensor Network Technologies for Condition Monitoring of Industrial Assets , 2012, APMS.

[30]  Rapinder Sawhney,et al.  Analysis of Acoustic Emission Data for Bearings subject to Unbalance , 2020 .

[31]  C. James Li,et al.  Signal Processing in Manufacturing Monitoring , 2006 .

[32]  Johan Potgieter,et al.  Reconfigurable Mechatronic Robotic Plug-and-Play Controller , 2005 .

[33]  Surjya K. Pal,et al.  Tool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertainties , 2011, J. Intell. Manuf..

[34]  Josefina Barnachea Janier,et al.  Condition Monitoring System for Induction Motor Using Fuzzy Logic Tool , 2011, 2011 First International Conference on Informatics and Computational Intelligence.

[35]  N. Sharkey,et al.  Cylinder Pressures and Vibration in Internal Combustion Engine Condition Monitoring , 1999 .

[36]  Daniel J. Inman,et al.  Impedance-Based Structural Health Monitoring with Artificial Neural Networks , 2000 .

[37]  Kaushik Mukherjee,et al.  Vibration Monitoring of Rotating Machines Using MEMS Accelerometer , 2014 .

[38]  Şahin Yildirim,et al.  Noise analysis of robot manipulator using neural networks , 2010 .

[39]  Nishchal K. Verma,et al.  Android app for intelligent CBM , 2013, 2013 IEEE International Symposium on Industrial Electronics.

[40]  A. Ferrara,et al.  Actuators and sensors fault detection for robot manipulators via second order sliding mode observers , 2008, 2008 International Workshop on Variable Structure Systems.

[41]  Philip Wild Industrial Sensors and Applications for Condition Monitoring , 1994 .

[42]  Mohammed Abo-Zahhad,et al.  ECG Signal Compression Using Discrete Wavelet Transform , 2011 .

[43]  Paresh Girdhar Practical Machinery Vibration Analysis and Predictive Maintenance , 2004 .

[44]  Cheng Gang Zhen,et al.  Fault Diagnosis for Wind Turbines Based on Vibration Signal Analysis , 2011 .

[45]  Robert Faludi Building wireless sensor networks , 2010 .

[46]  Yibing Liu,et al.  Pitting Fault Detection of a Wind Turbine Gearbox Using Empirical Mode Decomposition , 2014 .

[47]  Xie Ben Wei,et al.  Design of LabView-Based System of Noise Measurement on Gear Box , 2011 .

[48]  Shane Butler Prognostic Algorithms for ConditionMonitoring and Remaining Useful LifeEstimation , 2012 .

[49]  Vivek Agarwal,et al.  Embedded Operating Systems for Real-Time Applications , 2002 .

[50]  Fadi Al-Badour,et al.  Vibration analysis of rotating machinery using time-frequency analysis and wavelet techniques , 2011 .

[51]  Peter Funk,et al.  Fault diagnosis in industry using sensor readings and case-based reasoning , 2004, J. Intell. Fuzzy Syst..

[52]  M. A. Sharaf El-Din,et al.  Statistical Process Control Charts Applied to Steelmaking Quality Improvement , 2006 .

[53]  Ian Howard,et al.  Multi Fault Diagnosis of the Centrifugal Pump Using the Wavelet Transform and Principal Component Analysis , 2015 .

[54]  Bin Zhang,et al.  Rolling element bearing vibration modeling with applications to health monitoring , 2012 .

[55]  Joy Mazumdar,et al.  System and method for determining harmonic contributions from nonlinear loads in power systems , 2006 .

[56]  Tao Wei,et al.  Signal decomposition and fault diagnosis of a SCARA robot based only on tip acceleration measurement , 2009, 2009 International Conference on Mechatronics and Automation.

[57]  S I Abdul Raouf,et al.  Predictive Maintenance of Pumps Using Condition Monitoring , 2005 .

[58]  Andrew Starr,et al.  Suitability of MEMS Accelerometers for Condition Monitoring: An experimental study , 2008, Sensors.

[59]  Hongzhong Ma,et al.  Vibration research on winding faults of induction motor based on experiment modal analysis method , 2007, 2007 International Power Engineering Conference (IPEC 2007).

[60]  Asoke K. Nandi,et al.  Genetic algorithms for feature selection in machine condition monitoring with vibration signals , 2000 .

[61]  Sheng Zhang,et al.  The Fault Diagnosis of Machine Based on Modal Analysis , 2009, 2009 International Conference on Measuring Technology and Mechatronics Automation.

[62]  Junlong Fang,et al.  A Novel Self-Powered Wireless Sensor Node Based on Energy Harvesting for Mechanical Vibration Monitoring , 2014 .

[63]  Anand Parey,et al.  Dynamic modelling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect , 2006 .

[64]  Jay Lee,et al.  Robust performance degradation assessment methods for enhanced rolling element bearing prognostics , 2003, Adv. Eng. Informatics.

[65]  Wen-Tsai Sung,et al.  Mobile Monitoring and Embedded Control System for Factory Environment , 2013, Sensors.

[66]  Lihui Wang,et al.  Condition monitoring and control for intelligent manufacturing , 2006 .

[67]  Chien-Yue Chen,et al.  Continuous Wavelet Transformation the Wavelet Implemented on a DSP Chip for EEG Monitoring , 2009, 2009 First International Conference on Information Science and Engineering.

[68]  D B Welbourn,et al.  FUNDAMENTAL KNOWLEDGE OF GEAR NOISE: A SURVEY , 1979 .

[69]  M. M. Fouad,et al.  Application of image registration methods in monitoring the progression of surface fatigue failures in geared transmission systems , 2012, 2012 IEEE Aerospace Conference.

[70]  Zahawi,et al.  Application of wavelet transformation for the indentification of high frequency spurious signals in step down DC - DC converter circuits experiencing intermittent chaotic patterns , 1988 .

[71]  Ming J. Zuo,et al.  Vibration signal modeling of a planetary gear set for tooth crack detection , 2015 .

[72]  Charles R. Farrar,et al.  Structural Health Monitoring: A Machine Learning Perspective , 2012 .

[73]  Dar Yun Chiang,et al.  Structural Damage Detection Using the Simulated Evolution Method , 1999 .

[74]  Sungshin Kim,et al.  Predictive Fault Detection and Diagnosis of Nuclear Power Plant Using the Two-Step Neural Network Models , 2006, ISNN.

[75]  P. Sicard,et al.  Field-oriented control of induction motors using neural-network decouplers , 1997 .

[76]  T. A. Harris,et al.  Advanced concepts of bearing technology , 2007 .

[77]  Peter W. Tse,et al.  Remote Machine Monitoring Through Mobile Phone, Smartphone or PDA , 2006 .

[78]  Huifen Zhang,et al.  Application of integrated neural network based on information combination for fault diagnosis in steam turbine generator , 2008, 2008 International Conference on Condition Monitoring and Diagnosis.

[79]  D R Parhi,et al.  Application of neural network and finite element for condition monitoring of structures , 2011 .

[80]  Niaoqing Hu,et al.  Design of Embedded Wireless Sensor and its Soft Encapsulation for Embedded Monitoring of Helicopter Planetary Gear Set , 2012 .

[81]  Zeljko Djurovic,et al.  Fault detection in electric power systems based on control charts , 2013 .

[82]  Paul Sas,et al.  INTELLIGENT JOINT FAULT DIAGNOSIS OF INDUSTRIAL ROBOTS , 1998 .

[83]  Steven X. Ding,et al.  Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools , 2008 .

[84]  P. Elosegui,et al.  Measurement of the dynamic model of a PUMA 560 robot using experimental modal analysis , 1994 .

[85]  O. Bouzid In-situ health monitoring for wind turbine blade using acoustic wireless sensor networks at low sampling rates , 2013 .

[86]  Zijun Zhang,et al.  Fault Analysis and Condition Monitoring of the Wind Turbine Gearbox , 2012, IEEE Transactions on Energy Conversion.

[87]  Marcus Pettersson,et al.  Design Optimization in Industrial Robotics Methods and Algorithms for Drive Train Design , 2008 .

[88]  Wei Zhou,et al.  Bearing Fault Detection Via Stator Current Noise Cancellation and Statistical Control , 2008, IEEE Transactions on Industrial Electronics.

[89]  Naim Baydar,et al.  DETECTION OF INCIPIENT TOOTH DEFECT IN HELICAL GEARS USING MULTIVARIATE STATISTICS , 2001 .

[90]  L Romeral,et al.  Condition monitoring system for characterization of electric motor ball bearings with distributed fault using fuzzy inference tools , 2010, 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings.

[91]  Aiwina Soong Yin Heng Intelligent prognostics of machinery health utilising suspended condition monitoring data , 2009 .

[92]  Renato Tinós,et al.  Fault detection and isolation in robotic manipulators via neural networks: A comparison among three architectures for residual analysis , 2001, J. Field Robotics.

[93]  Roque Alfredo Osornio-Rios,et al.  FPGA-Based Fused Smart Sensor for Dynamic and Vibration Parameter Extraction in Industrial Robot Links , 2010, Sensors.

[94]  Frank L. Lewis,et al.  Intelligent Fault Diagnosis and Prognosis for Engineering Systems , 2006 .

[95]  Shahin Hedayati Kia,et al.  Torsional Vibration Assessment Using Induction Machine Electromagnetic Torque Estimation , 2010, IEEE Transactions on Industrial Electronics.

[96]  Claudiu-Florinel Bisu,et al.  Dynamic Behavior Analysis for a Six Axis Industrial Machining Robot , 2011, ArXiv.

[97]  Haiyi Zhu,et al.  Assessment of Rotor Degradation in Steam Turbine Using Support Vector Machine , 2009, 2009 Asia-Pacific Power and Energy Engineering Conference.

[98]  Gérard Dreyfus,et al.  Neural networks - methodology and applications , 2005 .

[99]  Alejandro García-González,et al.  Discrete Wavelet transform and ANFIS classifier for Brain-Machine Interface based on EEG , 2013, 2013 6th International Conference on Human System Interactions (HSI).

[100]  Constantinos Mavroidis,et al.  Neural Netowrk Based Fault Diagnostics of Industrial Robots using Wavelt Multi-Resolution Analysis , 2007, 2007 American Control Conference.

[101]  K. Moslem,et al.  Structural Damage Detection by Genetic Algorithms , 2002 .

[102]  Eduardo Julio Moya de la Torre,et al.  Fault detection and fuzzy rule extraction in AC motors by a neuro-fuzzy ART-based system , 2005, Eng. Appl. Artif. Intell..

[103]  T.G. Habetler,et al.  Motor bearing damage detection using stator current monitoring , 1994, Proceedings of 1994 IEEE Industry Applications Society Annual Meeting.

[104]  MARIANA IORGULESCU,et al.  Vibration Monitoring for Electrical Equipment Faults Detection Using Fast Fourier Transform , 2009 .

[105]  Robert V. Brill,et al.  Applied Statistics and Probability for Engineers , 2004, Technometrics.

[106]  Prem Kumar Kalra,et al.  Condition Monitoring of Internal Combustion Engine Using EMD and HMM , 2010, Intelligent Autonomous Systems.

[107]  Magd Abdel Wahab,et al.  Dynamics and Vibration: An Introduction , 2008 .

[108]  Maurizio Di Paolo Emilio,et al.  Embedded Systems Design for High-Speed Data Acquisition and Control , 2014 .

[109]  Christopher M. Collins,et al.  An Evaluation of Embedded System Behavior Using Full-System Software Emulation , 2000 .

[110]  V. F. Filaretov,et al.  Observer-based fault diagnosis in manipulation robots , 1999 .

[111]  S. J. Loutridis Gear failure prediction using multiscale local statistics , 2008 .

[112]  Ping Wang,et al.  A Module Harvesting Wind and Solar Energy for Wireless Sensor Node , 2012, CWSN.

[113]  Sandhya Samarasinghe,et al.  Neural Networks for Applied Sciences and Engineering , 2006 .

[114]  Vincenzo Catania,et al.  Genetic Tuning of Fuzzy Rule Deep Structures for Efficient Knowledge Extraction from Medical Data , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[115]  Joseph C. Chen,et al.  Tool condition monitoring in an end-milling operation based on the vibration signal collected through a microcontroller-based data acquisition system , 2008 .

[116]  Saeed Mohseni,et al.  Fault diagnosis in robot manipulators in presence of modeling uncertainty and sensor noise , 2009, 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC).

[117]  Heshan Fernando Artificial Neural Networks for Fault Detection and Identification on an Automated Assembly Machine , 2014 .

[118]  Chih-Chen Chang,et al.  Statistical Wavelet-Based Method for Structural Health Monitoring , 2004 .

[119]  Kihong Shin,et al.  Fundamentals of Signal Processing for Sound and Vibration Engineers , 2008 .

[120]  Anwesh Kotta,et al.  Condition Monitoring : Using Computational intelligence methods , 2015 .

[121]  Neerparaj Rai,et al.  Neural Network based Closed loop Speed Control of DC Motor using Arduino Uno , 2013 .

[122]  Momoh Jimoh Emiyoka Salami,et al.  Vibration Faults Simulation System (VFSS): A Lab Equipment to aid Teaching of Mechatronics Courses* , 2004 .

[123]  Aly El-Kafrawy,et al.  Crack detection by modal analysis in 3D beams based on FEM , 2011 .

[124]  Teng Gong,et al.  A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion , 2016, Neurocomputing.

[125]  Shady M. Gadoue Artificial intelligence applied to speed sensorless induction motor drives , 2009 .

[126]  Endo Hiroaki,et al.  Gearbox Simulation Models with Gear and Bearing Faults , 2012 .

[127]  H. Metin Ertunc,et al.  Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system , 2009 .

[128]  S. I. Marandu Design of a mechatronic measurement system for surface fatigue of dental composites , 2014 .

[129]  Phayung Meesad,et al.  An effective neuro-fuzzy paradigm for machinery condition health monitoring , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[130]  Andrea Klug,et al.  Theory And Design For Mechanical Measurements , 2016 .

[131]  S.O.T. Ogaji,et al.  Advanced gas-path fault diagnostics for stationary gas turbines , 2003 .

[132]  Zhang Yingtang,et al.  Research on smart sensor network in fault diagnose system , 2010, 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering.

[133]  M. Penhaker,et al.  Health Maintenance Embedded Systems in Home Care Applications , 2007, Second International Conference on Systems (ICONS'07).

[134]  Krzysztof Jemielniak,et al.  Tool condition monitoring using artificial intelligence methods , 2002 .

[135]  Hack-Eun Kim,et al.  Machine prognostics based on health state probability estimation , 2010 .

[136]  Antonella Ferrara,et al.  Higher Order Sliding Mode observers for actuator faults Diagnosis in robot manipulators , 2010, 2010 IEEE International Symposium on Industrial Electronics.

[137]  Ranjan Ganguli,et al.  Genetic fuzzy system for damage detection in beams and helicopter rotor blades , 2003 .

[138]  S. Sumathi,et al.  Introduction to neural networks using MATLAB 6.0 , 2006 .

[139]  Ilian A. Bonev,et al.  Characterization and experimental evaluation of gear transmission errors in an industrial robot , 2013, Ind. Robot.

[140]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[141]  Amit Shrivastava,et al.  Vibration signature analysis for Ball Bearing of Three Phase Induction Motor , 2012 .

[142]  M. H. Aliabadi,et al.  Damage detection in smart structures using neural networks and finite-element analyses , 2016 .

[143]  Arturo Garcia-Perez,et al.  Reconfigurable Monitoring System for Time-Frequency Analysis on Industrial Equipment Through STFT and DWT , 2013, IEEE Transactions on Industrial Informatics.

[144]  Luis Angel García-Escudero,et al.  Robust condition monitoring for early detection of broken rotor bars in induction motors , 2011, Expert Syst. Appl..

[145]  Sen M. Kuo,et al.  Real-time digital signal processing , 2001 .

[146]  H. Metin Ertunç,et al.  Applied Real Time Bearing Fault Diagnosis Based on Vibration and Current Analysis , 2008, IC-AI.

[147]  B.M. Wilamowski,et al.  A Neural Network Implementation on an Inexpensive Eight Bit Microcontroller , 2008, 2008 International Conference on Intelligent Engineering Systems.

[148]  Biao Ma,et al.  Study on Condition Monitoring of Power-Shift Steering Transmission Based on Support Vector Machine , 2009, 2009 International Conference on Computational Intelligence and Software Engineering.

[149]  Kikuo Nezu,et al.  Design of mixture de-noising for detecting faulty bearing signals , 2005 .

[150]  Yingxu Wang,et al.  An intelligent fault recognizer for rotating machinery via remote characteristic vibration signal detection , 2011, IEEE 10th International Conference on Cognitive Informatics and Cognitive Computing (ICCI-CC'11).

[151]  John Fulcher,et al.  Advances in Applied Artificial Intelligence , 2006 .

[152]  Thomas R. Kurfess,et al.  Rolling element bearing diagnostics in run-to-failure lifetime testing , 2001 .

[153]  V. Meruane,et al.  An hybrid real genetic algorithm to detect structural damage using modal properties , 2011 .

[154]  James D. Smith,et al.  Gears and Their Vibration, A Basic Approach to Understanding Gear Noise , 1983 .

[155]  Asoke K. Nandi,et al.  Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines , 2006 .

[156]  Anders Brandt,et al.  Noise and Vibration Analysis: Signal Analysis and Experimental Procedures , 2011 .

[157]  Andy C. C. Tan,et al.  Experimental Study on Condition Monitoring of Low Speed Bearings : Time Domain Analysis , 2007 .

[158]  Dong Pyo Hong,et al.  Infrared Thermographic Diagnosis Mechnism for Fault Detection of Ball Bearing under Dynamic Loading Conditions , 2011 .

[159]  Jan Swevers,et al.  Experimental Robot Identification: Advantages of Combining Internal and External Measurements and of Using Periodic Excitation , 2001 .

[160]  Bing Wu,et al.  Design and Implementation of Intelligent Monitoring and Diagnosis System Based on WSN and MAS , 2011, WISM.

[161]  Girish Kumar Singh,et al.  Experimental investigations on induction machine condition monitoring and fault diagnosis using digital signal processing techniques , 2003 .

[162]  Michael Negnevitsky,et al.  Artificial Intelligence: A Guide to Intelligent Systems , 2001 .

[163]  Shuang-Hua Yang,et al.  Wireless Sensor Networks: Principles, Design and Applications , 2013 .

[164]  H. Van Brussel,et al.  Condition Monitoring of Robot Joints Using Statistical and Nonlinear Dynamics Tools , 2003 .

[165]  Chwan-Lu Tseng,et al.  A Diagnostic System for Speed-Varying Motor Rotary Faults , 2014 .

[166]  Sujan Rajbhandari,et al.  Application of wavelets and artificial neural network for indoor optical wireless communication systems , 2010 .

[167]  Fengshou Gu,et al.  Two Stage Helical Gearbox Fault Detection and Diagnosis based on Continuous Wavelet Transformation of Time Synchronous Averaged Vibration Signals , 2012 .

[168]  Fengshou Gu,et al.  Implementation of envelope analysis on a wireless condition monitoring system for bearing fault diagnosis , 2015, Int. J. Autom. Comput..

[169]  Shahab Hasanzadeh Ghafari,et al.  A Fault Diagnosis System for Rotary Machinery Supported by Rolling Element Bearings , 2007 .

[170]  Jorge Novillo,et al.  Advanced Signal Processing Techniques , 1991 .

[171]  Robert C. Juvinall,et al.  Fundamentals of machine component design , 1983 .

[172]  Qian Wang Artificial Neural Network and Hidden Space SVM for Fault Detection in Power System , 2009, ISNN.

[173]  M D Harpen An introduction to wavelet theory and application for the radiological physicist. , 1998, Medical physics.

[174]  B. Samanta,et al.  Gear fault detection using artificial neural networks and support vector machines with genetic algorithms , 2004 .

[175]  Robert B. Randall,et al.  Simulating gear and bearing interactions in the presence of faults. Part I. The combined gear bearing dynamic model and the simulation of localised bearing faults , 2008 .

[176]  Amirhossein Ghods,et al.  A frequency-based approach to detect bearing faults in induction motors using discrete wavelet transform , 2014, 2014 IEEE International Conference on Industrial Technology (ICIT).

[177]  Cameron H. G. Wright,et al.  Comparison of DSP boards for classroom use , 2013, 2013 IEEE Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE).

[178]  Mohammed Ben‐Daya,et al.  Condition‐Based Maintenance , 2016 .

[179]  Akira Mita,et al.  Damage assessment of bending structures using support vector machine , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[180]  Wenbin Wang,et al.  Early defect identification: application of statistical process control methods , 2008 .

[181]  George CONSTANTIN,et al.  COMPUTER AIDED ENGINEERING OF INDUSTRIAL ROBOTS , 2014 .

[182]  Murugappan Murugappan,et al.  ECG Signal Denoising Using Wavelet Thresholding Techniques in Human Stress Assessment , 2012 .

[183]  Amiya R Mohanty,et al.  Monitoring gear vibrations through motor current signature analysis and wavelet transform , 2006 .

[184]  David He,et al.  Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study , 2014, Sensors.

[185]  Andy C. C. Tan,et al.  Condition monitoring of low speed bearings: A comparative study of the ultrasound technique versus vibration measurements , 2008, WCE 2008.

[186]  Stefania Gallova Fuzzy Parameters and Cutting Forces Optimization via Genetic Algorithm Approach , 2010 .

[187]  Han G. Park,et al.  Gray-Box Approach for Fault Detection of Dynamical Systems , 2003 .

[188]  Robert Sutton,et al.  An introduction to wavelet transforms:aA tutorial approach , 2003 .

[189]  Luigi Villani,et al.  Actuators fault diagnosis for robot manipulators with uncertain model , 2009 .

[190]  Yaguo Lei,et al.  Two new features for condition monitoring and fault diagnosis of planetary gearboxes , 2015 .

[191]  Satish C. Sharma,et al.  Fault diagnosis of ball bearings using continuous wavelet transform , 2011, Appl. Soft Comput..

[192]  Athanasios N. Safacas,et al.  Detection of Backlash Phenomena Appearing in a Single Cement Kiln Drive Using the Current and the Electromagnetic Torque Signature , 2013, IEEE Transactions on Industrial Electronics.

[193]  J.M. Conrad,et al.  A survey of energy harvesting sources for embedded systems , 2008, IEEE SoutheastCon 2008.

[194]  Nasser Kehtarnavaz,et al.  Digital Signal Processing System Design: LabVIEW-Based Hybrid Programming , 2008 .

[195]  Wentao Huang,et al.  Spur Bevel Gearbox Fault Diagnosis Using Wavelet Packet Transform for Feature Extraction , 2014 .

[196]  Maria Q. Feng,et al.  Damage detection of structures using support vector machines under various boundary conditions , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[197]  Jyoti K. Sinha,et al.  On-Shaft Wireless Vibration Measurement for Condition Monitoring of Rotating Machine , 2011 .

[198]  L. Shafai,et al.  A wireless embedded sensor for structural health monitoring applications , 2009, 2009 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting.

[199]  Patrik Axelsson,et al.  Modeling and Identification of Wear in a Robot Joint under Temperature Uncertainties , 2011 .

[200]  Rajeev Piyare,et al.  Performance Analysis of XBee ZB Module Based Wireless Sensor Networks , 2013 .

[201]  Grzegorz Litak,et al.  Multiresolution Wavelet Analysis of the Dynamics of a Cracked Rotor , 2009 .

[202]  Stephan Ebersbach,et al.  The investigation of the condition and faults of a spur gearbox using vibration and wear debris analysis techniques , 2006 .

[203]  Zhixin Yang,et al.  Machine condition monitoring and fault diagnosis based on support vector machine , 2010, 2010 IEEE International Conference on Industrial Engineering and Engineering Management.