Detection of anthrax simulants with microcalorimetric spectroscopy: Bacillus subtilis and Bacillus cereus spores.

Recent advances in the development of ultrasensitive micromechnical thermal detectors have led to the advent of novel subfemtojoule microcalorimetric spectoscopy (CalSpec). On the basis of principles of photothermal IR spectroscopy combined with efficient thermomechanical transduction, CalSpec provides acquisition of vibrational spectra of microscopic samples and absorbates. We use CalSpec as a method of identifying nanogram quantities of biological micro-organisms. Our studies focus on Bacillus subtilis and Bacillus cereus spores as simulants for Bacillus anthracis spores. Using CalSpec, we measured IR spectra of B. subtilis and B. cereus spores present on surfaces in nanogram quantities (approximately 100-1,000 spores). The spectra acquired in the wavelength range of 690-4000 cm(-1) (2.5-14.5 microm) contain information-rich vibrational signatures that reflect the different ratios of biochemical makeup of the micro-organisms. The distinctive features in the spectra obtained for the two types of microorganism can be used to distinguish between the spores of the Bacillus family. As compared with conventional IR and Fourier-transform IR microscopic spectroscopy techniques, the advantages of the present technique include significantly improved sensitivity (at least a full order of magnitude), absence of expensive IR detectors, and excellent potential for miniaturization.

[1]  M. Manfait,et al.  Applications of FTIR spectroscopy in structural studies of cells and bacteria , 1991 .

[2]  Siegfried Scherer,et al.  Identification of coryneform bacteria and related taxa by Fourier-transform infrared (FT-IR) spectroscopy. , 2002, International journal of systematic and evolutionary microbiology.

[3]  L. Bush,et al.  Index case of fatal inhalational anthrax due to bioterrorism in the United States. , 2001, The New England journal of medicine.

[4]  D. White,et al.  Flash detection/identification of pathogens, bacterial spores and bioterrorism agent biomarkers from clinical and environmental matrices. , 2002, Journal of microbiological methods.

[5]  R. Doi,et al.  Ultrastructural Analysis During Germination and Outgrowth of Bacillus subtilis Spores , 1974, Journal of bacteriology.

[6]  Frances S. Ligler,et al.  Remote Sensing Using an Airborne Biosensor , 1998 .

[7]  B. V. Bronk,et al.  A review of molecular recognition technologies for detection of biological threat agents. , 2000, Biosensors & bioelectronics.

[8]  Henk J. Busscher,et al.  Grouping of streptococcus mitis strains grown on different growth media by FT-IR , 1996 .

[9]  J. E. Katon Applications of vibrational microspectroscopy to chemistry , 1994 .

[10]  J. Greenberg,et al.  Can spores survive in interstellar space? , 1985, Nature.

[11]  Jadwiga Bienkowska,et al.  Crystal structure of the anthrax lethal factor , 2001, Nature.

[12]  M. Milham,et al.  Optical properties of horseradish peroxidase from 0.13 to 2.5 μm , 1997 .

[13]  Panos G. Datskos,et al.  Remote optical detection using microcantilevers , 1996 .

[14]  N. Munakata,et al.  ACTION SPECTRA IN ULTRAVIOLET WAVELENGTHS (150‐250 nm) FOR INACTIVATION AND MUTAGENESIS OF Bacillus subtilis SPORES OBTAINED WITH SYNCHROTRON RADIATION , 1986, Photochemistry and photobiology.

[15]  W. Whitten,et al.  Real-time detection of individual airborne bacteria , 1997 .

[16]  Panos G. Datskos,et al.  Uncooled thermal imaging using a piezoresistive microcantilever , 1996 .

[17]  J. Quinlan,et al.  Monoclonal antibodies for use in detection of Bacillus and Clostridium spores , 1997, Applied and environmental microbiology.

[18]  H. Güntherodt,et al.  Picojoule and submillisecond calorimetry with micromechanical probes , 1998 .

[19]  Anthrax: A molecular full nelson , 2002, Nature.

[20]  D. Naumann,et al.  Classification and identification of bacteria by Fourier-transform infrared spectroscopy. , 1991, Journal of general microbiology.

[21]  P. Wyatt Differential light scattering: a physical method for identifying living bacterial cells. , 1968, Applied optics.

[22]  Crystallographic studies of the anthrax lethal toxin , 1999, Journal of applied microbiology.

[23]  Panos G. Datskos,et al.  Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices , 2001 .

[24]  Biological agents: weapons of warfare and bioterrorism. , 2001 .

[25]  Harald Labischinski,et al.  Microbiological characterizations by FT-IR spectroscopy , 1991, Nature.

[26]  M. Swartz Recognition and management of anthrax--an update. , 2001, The New England journal of medicine.

[27]  M. Milham,et al.  Optical properties of Bacillus subtilis spores from 0.2 to 2.5 num. , 1997, Applied optics.

[28]  Harald Labischinski,et al.  Elaboration of a procedure for identification of bacteria using Fourier-Transform IR spectral libraries: a stepwise correlation approach , 1991 .

[29]  L. Mariey,et al.  Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics , 2001 .

[30]  J. Chalmers,et al.  Localized photothermal infrared spectroscopy using a proximal probe , 2001 .

[31]  L. Rodriguez-Saona,et al.  Rapid detection and identification of bacterial strains by Fourier transform near-infrared spectroscopy. , 2001, Journal of agricultural and food chemistry.

[32]  Joseph Maria Kumar Irudayaraj,et al.  Differentiation and detection of microorganisms using fourier transform infrared photoacoustic spectroscopy , 2002 .

[33]  J. Bruno,et al.  Sensitive detection of biotoxoids and bacterial spores using an immunomagnetic electrochemiluminescence sensor. , 1995, Biosensors & bioelectronics.

[34]  Thomas Udelhoven,et al.  Development of a Hierarchical Classification System with Artificial Neural Networks and FT-IR Spectra for the Identification of Bacteria , 2000 .

[35]  A. Castro,et al.  Ultrasensitive, direct detection of a specific DNA sequence of Bacillus anthracis in solution. , 2000, The Analyst.

[36]  J. K. Gimzewski,et al.  Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device , 1994, Nature.

[37]  P. Stopa The flow cytometry of Bacillus anthracis spores revisited. , 2000, Cytometry.

[38]  D. Naumann FT-INFRARED AND FT-RAMAN SPECTROSCOPY IN BIOMEDICAL RESEARCH , 2001 .

[39]  E. Elhanany,et al.  Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. , 2001, Rapid communications in mass spectrometry : RCM.

[40]  J. Ezzell,et al.  Current laboratory methods for biological threat agent identification. , 2001, Clinics in laboratory medicine.

[41]  Panos G. Datskos,et al.  Remote infrared radiation detection using piezoresistive microcantilevers , 1996 .

[42]  James K. Gimzewski,et al.  Thermal analysis using a micromechanical calorimeter , 1996 .

[43]  J. Kiel,et al.  In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. , 1999, Biosensors & bioelectronics.