Identification of Time-Varying Systems in Reproducing Kernel Hilbert Spaces
暂无分享,去创建一个
[1] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[2] Richard Courant,et al. Methods of Mathematical Physics, 1 , 1955 .
[3] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[4] L. Schwartz. Radon measures on arbitrary topological spaces and cylindrical measures , 1973 .
[5] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[6] Thomas Kailath,et al. Linear Systems , 1980 .
[7] David G. Luenberger,et al. Linear and nonlinear programming , 1984 .
[8] G. Wahba. Spline models for observational data , 1990 .
[9] Lei Guo. Estimating time-varying parameters by the Kalman filter based algorithm: stability and convergence , 1990 .
[10] Costas N. Georghiades,et al. The expectation-maximization algorithm for symbol unsynchronized sequence detection , 1991, IEEE Trans. Commun..
[11] A. Dembo,et al. Onsager-Machlup functionals and maximum a posteriori estimation for a class of non-Gaussian random fields , 1991 .
[12] Y. Tsypkin,et al. An optimal algorithm for identification of rapidly time-varying systems , 1992 .
[13] S. Bittanti,et al. Bounded error identification of time-varying parameters by RLS techniques , 1994, IEEE Trans. Autom. Control..
[14] A. Packard. Gain scheduling via linear fractional transformations , 1994 .
[15] Marco C. Campi,et al. Exponentially weighted least squares identification of time-varying systems with white disturbances , 1994, IEEE Trans. Signal Process..
[16] R. Kohn,et al. On Gibbs sampling for state space models , 1994 .
[17] P. Gahinet,et al. A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..
[18] R. Ravikanth,et al. Identification of linear parametrically varying systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[19] Sylvia Richardson,et al. Markov Chain Monte Carlo in Practice , 1997 .
[20] L. Wang. Persistent identification of time-varying systems , 1997, IEEE Trans. Autom. Control..
[21] Narasimhan Sundararajan,et al. Identification of time-varying nonlinear systems using minimal radial basis function neural networks , 1997 .
[22] Giuseppe De Nicolao,et al. Nonparametric input estimation in physiological systems: Problems, methods, and case studies , 1997, Autom..
[23] Luo Yingwei,et al. Identification of time-varying nonlinear systems using minimal radial basis function neural networks : Special section on marine control , 1997 .
[24] Chung-ki Min. A Gibbs sampling approach to estimation and prediction of time-varying-parameter models , 1998 .
[25] Tomaso Poggio,et al. A Unified Framework for Regularization Networks and Support Vector Machines , 1999 .
[26] Sean P. Meyn,et al. Bounds on achievable performance in the identification and adaptive control of time-varying systems , 1999, IEEE Trans. Autom. Control..
[27] Jamie S. Evans,et al. Optimal filtering of doubly stochastic auto-regressive processes , 1999, Autom..
[28] Vikram Krishnamurthy,et al. Finite dimensional smoothers for MAP state estimation of bilinear systems , 1999, IEEE Trans. Signal Process..
[29] Arnaud Doucet,et al. Stochastic sampling algorithms for state estimation of jump Markov linear systems , 2000, IEEE Trans. Autom. Control..
[30] Christophe Andrieu,et al. Iterative algorithms for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..
[31] H. V. Trees. Detection, Estimation, And Modulation Theory , 2001 .
[32] Felipe Cucker,et al. On the mathematical foundations of learning , 2001 .
[33] B. Ghosh,et al. Boundary Location Using Control Theoretic Splines , 2002 .
[34] Christophe Andrieu,et al. Efficient particle filtering for Jump Markov Systems , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[35] Bassam Bamieh,et al. Identification of linear parameter varying models , 2002 .
[36] Christophe Andrieu,et al. Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions , 2003, IEEE Trans. Signal Process..
[37] Giuseppe De Nicolao,et al. Regularization networks for inverse problems: A state-space approach , 2003, Autom..
[38] G. Pillonetto,et al. Estimating parameters and stochastic functions of one variable using nonlinear measurement models , 2004 .
[39] Eugenio Cinquemani,et al. State estimation in stochastic hybrid Systems with sparse observations , 2006, IEEE Transactions on Automatic Control.
[40] Giuseppe De Nicolao,et al. Nonparametric identification of population models via Gaussian processes , 2007, Autom..
[41] Gianluigi Pillonetto,et al. Solutions of nonlinear control and estimation problems in reproducing kernel Hilbert spaces: Existence and numerical determination , 2008, Autom..