Un metodo estable para la evaluacion de la complejidad algoritmica de cadenas cortas

It is discussed and surveyed a numerical method proposed before, that alternative to the usual compression method, provides an approximation to the algorithmic (Kolmogorov) complexity, particularly useful for short strings for which compression methods simply fail. The method shows to be stable enough and useful to conceive and compare patterns in an algorithmic models. (article in Spanish)

[1]  Jean-Paul Delahaye,et al.  Numerical evaluation of algorithmic complexity for short strings: A glance into the innermost structure of randomness , 2011, Appl. Math. Comput..

[2]  Rolf Herken,et al.  The Universal Turing Machine: A Half-Century Survey , 1992 .

[3]  Allen H. Brady The determination of the value of Rado’s noncomputable function Σ() for four-state Turing machines , 1983 .

[4]  Nicholas Oldland,et al.  The Busy Beaver , 2011 .

[5]  Shen Lin,et al.  Computer Studies of Turing Machine Problems , 1965, JACM.

[6]  Jean-Paul Delahaye,et al.  On the Kolmogorov-Chaitin Complexity for short sequences , 2007, ArXiv.

[7]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[8]  Cristian S. Calude Information and Randomness: An Algorithmic Perspective , 1994 .

[9]  Boris A. Trakhtenbrot,et al.  A Survey of Russian Approaches to Perebor (Brute-Force Searches) Algorithms , 1984, Annals of the History of Computing.

[10]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[11]  Jean-Paul Delahaye,et al.  Image characterization and classification by physical complexity , 2010, Complex..

[12]  Hector Zenil,et al.  The World is Either Algorithmic or Mostly Random , 2011, ArXiv.

[13]  Gregory J. Chaitin,et al.  A recent technical report , 1974, SIGA.

[14]  Jean-Paul Delahaye,et al.  On the Algorithmic Nature of the World , 2009, ArXiv.

[15]  Joë Metzger,et al.  Pour la science , 1974 .

[16]  Paul M. B. Vitányi,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1993, Graduate Texts in Computer Science.

[17]  Cristian Claude,et al.  Information and Randomness: An Algorithmic Perspective , 1994 .

[18]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[19]  R. Forthofer,et al.  Rank Correlation Methods , 1981 .