SARS-CoV-2 ORF10 suppresses the antiviral innate immune response by degrading MAVS through mitophagy

[1]  J. Garrido,et al.  SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns , 2021, Frontiers in Immunology.

[2]  Hongbin He,et al.  RACK1 degrades MAVS to promote bovine ephemeral fever virus replication via upregulating E3 ubiquitin ligase STUB1. , 2021, Veterinary microbiology.

[3]  K. Conzelmann,et al.  Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities , 2021, Cell Reports.

[4]  S. Elledge,et al.  ORF10–Cullin-2–ZYG11B complex is not required for SARS-CoV-2 infection , 2021, Proceedings of the National Academy of Sciences.

[5]  Yousong Peng,et al.  Compositional diversity and evolutionary pattern of coronavirus accessory proteins , 2020, Briefings Bioinform..

[6]  S. Chanda,et al.  MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells , 2020, Cell Reports.

[7]  Xiangmei Zhou,et al.  The role of mitophagy in innate immune responses triggered by mitochondrial stress , 2020, Cell communication and signaling : CCS.

[8]  Yan-Yi Wang,et al.  SARS-CoV-2 membrane glycoprotein M antagonizes the MAVS-mediated innate antiviral response , 2020, Cellular & Molecular Immunology.

[9]  S. Chanda,et al.  SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling , 2020, Proceedings of the National Academy of Sciences.

[10]  Zhongming Zhao,et al.  Differential Expression of Viral Transcripts From Single-Cell RNA Sequencing of Moderate and Severe COVID-19 Patients and Its Implications for Case Severity , 2020, Frontiers in Microbiology.

[11]  M. Fukushi,et al.  SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant , 2020, Cell Reports.

[12]  N. Krogan,et al.  SARS-CoV-2 ORF9c Is a Membrane-Associated Protein that Suppresses Antiviral Responses in Cells , 2020, bioRxiv.

[13]  L. Ren,et al.  Activation and evasion of type I interferon responses by SARS-CoV-2 , 2020, Nature Communications.

[14]  Ze-Guang Han,et al.  SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70 , 2020, Cellular & Molecular Immunology.

[15]  D. Matthews,et al.  Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein , 2020, Genome Medicine.

[16]  S. Nisole,et al.  Interplay between SARS-CoV-2 and the type I interferon response , 2020, PLoS pathogens.

[17]  Rui Luo,et al.  The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway , 2020, Virus Research.

[18]  Yang Han,et al.  The ORF3a protein of SARS-CoV-2 induces apoptosis in cells , 2020, Cellular & Molecular Immunology.

[19]  J. Thompson,et al.  Characterization of accessory genes in coronavirus genomes , 2020, Virology Journal.

[20]  Z. Zuo,et al.  Regulation of MAVS Expression and Signaling Function in the Antiviral Innate Immune Response , 2020, Frontiers in Immunology.

[21]  M. Clerici,et al.  Coding potential and sequence conservation of SARS-CoV-2 and related animal viruses , 2020, Infection, Genetics and Evolution.

[22]  B. Ye,et al.  Upstream ORFs Prevent MAVS Spontaneous Aggregation and Regulate Innate Immune Homeostasis , 2020, iScience.

[23]  S. Ghasemi,et al.  Genotype and phenotype of COVID-19: Their roles in pathogenesis , 2020, Journal of Microbiology, Immunology and Infection.

[24]  Weidong Wu,et al.  Virology, Epidemiology, Pathogenesis, and Control of COVID-19 , 2020, Viruses.

[25]  E. Holmes,et al.  The proximal origin of SARS-CoV-2 , 2020, Nature Medicine.

[26]  Zhenhua Zhang,et al.  The establishment of reference sequence for SARS‐CoV‐2 and variation analysis , 2020, Journal of medical virology.

[27]  Xiaowei Li,et al.  Molecular immune pathogenesis and diagnosis of COVID-19 , 2020, Journal of Pharmaceutical Analysis.

[28]  Huanchun Chen,et al.  Influenza A virus protein PB1-F2 impairs innate immunity by inducing mitophagy , 2020, Autophagy.

[29]  Alfonso J. Rodriguez-Morales,et al.  SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview , 2020 .

[30]  Hongbin He,et al.  Bovine herpesvirus 1 tegument protein UL41 suppresses antiviral innate immune response via directly targeting STAT1. , 2019, Veterinary microbiology.

[31]  N. Jouvenet,et al.  Stimulation of Innate Immunity by Host and Viral RNAs. , 2019, Trends in immunology.

[32]  K. Black,et al.  bioRxiv: the preprint server for biology , 2019, bioRxiv.

[33]  Barbara J Smith,et al.  Activation of NIX-mediated mitophagy by an interferon regulatory factor homologue of human herpesvirus , 2019, Nature Communications.

[34]  Yanhong Zhang,et al.  RNF34 functions in immunity and selective mitophagy by targeting MAVS for autophagic degradation , 2019, The EMBO journal.

[35]  Hongbin He,et al.  MiR-3470b promotes bovine ephemeral fever virus replication via directly targeting mitochondrial antiviral signaling protein (MAVS) in baby hamster Syrian kidney cells , 2018, BMC Microbiology.

[36]  Mingzhou Chen,et al.  Viral strategies for triggering and manipulating mitophagy , 2018, Autophagy.

[37]  Nektarios Tavernarakis,et al.  The Role of Mitophagy in Innate Immunity , 2018, Front. Immunol..

[38]  J. Cui,et al.  LRRC25 inhibits type I IFN signaling by targeting ISG15‐associated RIG‐I for autophagic degradation , 2018, The EMBO journal.

[39]  Xuewu Zhang,et al.  Multiple truncated isoforms of MAVS prevent its spontaneous aggregation in antiviral innate immune signalling , 2017, Nature Communications.

[40]  Mingzhou Chen,et al.  The Matrix Protein of Human Parainfluenza Virus Type 3 Induces Mitophagy that Suppresses Interferon Responses. , 2017, Cell host & microbe.

[41]  L. An,et al.  The role of Exo70 in vascular smooth muscle cell migration , 2016, Cellular & Molecular Biology Letters.

[42]  Y. Li,et al.  MAVS maintains mitochondrial homeostasis via autophagy , 2016, Cell Discovery.

[43]  Sebastian A. Wagner,et al.  Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria , 2016, Proceedings of the National Academy of Sciences.

[44]  G. Gao,et al.  Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses , 2016, Trends in Microbiology.

[45]  C. Burch,et al.  Coronavirus Host Range Expansion and Middle East Respiratory Syndrome Coronavirus Emergence: Biochemical Mechanisms and Evolutionary Perspectives. , 2015, Annual review of virology.

[46]  J. Burman,et al.  The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy , 2015, Nature.

[47]  S. Perlman,et al.  Coronaviruses: An Overview of Their Replication and Pathogenesis , 2015, Methods in molecular biology.

[48]  A. Osterhaus,et al.  Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. , 2012, The New England journal of medicine.

[49]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[50]  Yin Liu,et al.  Murine Coronavirus Induces Type I Interferon in Oligodendrocytes through Recognition by RIG-I and MDA5 , 2010, Journal of Virology.

[51]  Ivan Dikic,et al.  Nix is a selective autophagy receptor for mitochondrial clearance , 2010, EMBO reports.

[52]  R. Youle,et al.  Mechanisms of mitophagy , 2010, Nature Reviews Molecular Cell Biology.

[53]  A. Iwasaki,et al.  Autophagic control of RLR signaling , 2009, Autophagy.

[54]  A. Mirazimi,et al.  Inhibition of SARS-CoV replication cycle by small interference RNAs silencing specific SARS proteins, 7a/7b, 3a/3b and S , 2006, Antiviral Research.

[55]  D. Klionsky,et al.  Autophagy: molecular machinery for self-eating , 2005, Cell Death and Differentiation.

[56]  Jindrich Cinatl,et al.  Ribavirin and interferon-β synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines , 2004, Biochemical and Biophysical Research Communications.

[57]  T. Burns,et al.  Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. , 2004, Cancer cell.

[58]  Y. Guan,et al.  In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds , 2004, Journal of Clinical Virology.

[59]  Christian Drosten,et al.  Identification of a novel coronavirus in patients with severe acute respiratory syndrome. , 2003, The New England journal of medicine.