The quantum Allan variance

The instability of an atomic clock is characterized by the Allan variance, a measure widely used to describe the noise of frequency standards. We provide an explicit method to find the ultimate bound on the Allan variance of an atomic clock in the most general scenario where N atoms are prepared in an arbitrarily entangled state and arbitrary measurement and feedback are allowed, including those exploiting coherences between succeeding interrogation steps. While the method is rigorous and general, it becomes numerically challenging for large N and long averaging times.

[1]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[2]  A S Sørensen,et al.  Near-Heisenberg-limited atomic clocks in the presence of decoherence. , 2013, Physical review letters.

[3]  K. Banaszek,et al.  Quantum phase estimation with lossy interferometers , 2009, 0904.0456.

[4]  A. Ludlow,et al.  Making optical atomic clocks more stable with 10-16-level laser stabilization , 2011, 1101.1351.

[5]  A. Landragin,et al.  Phase locking a clock oscillator to a coherent atomic ensemble , 2015, 1501.03709.

[6]  Hidetoshi Katori,et al.  Optical lattice clocks and quantum metrology , 2011 .

[7]  S. Massar,et al.  Optimal quantum clocks , 1998, quant-ph/9808042.

[8]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[9]  A S Sørensen,et al.  Stability of atomic clocks based on entangled atoms. , 2004, Physical review letters.

[10]  A S Sørensen,et al.  Heisenberg-limited atom clocks based on entangled qubits. , 2013, Physical review letters.

[11]  Emanuel Knill,et al.  Improving quantum clocks via semidefinite programming , 2011, Quantum Inf. Comput..

[12]  Marcin Jarzyna,et al.  Matrix product states for quantum metrology. , 2013, Physical review letters.

[13]  M A Kasevich,et al.  Zero-dead-time operation of interleaved atomic clocks. , 2013, Physical review letters.

[14]  D. Leibfried,et al.  Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.

[15]  Jelmer J. Renema,et al.  Entanglement-assisted atomic clock beyond the projection noise limit , 2009, 0912.3895.

[16]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[17]  Madalin Guta,et al.  Heisenberg versus standard scaling in quantum metrology with Markov generated states and monitored environment , 2014, 1403.0116.

[18]  Steven Chu,et al.  Cold atoms and quantum control , 2002, Nature.

[19]  G. J. Dick,et al.  Local Oscillator Induced Instabilities in Trapped Ion Frequency Standards , 1987 .

[20]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[21]  D. Wineland,et al.  Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.

[22]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[23]  Ekkehard Peik,et al.  Laser frequency stabilization to a single ion , 2005, physics/0511168.

[24]  Marcin Jarzyna,et al.  True precision limits in quantum metrology , 2014, 1407.4805.

[25]  Uwe Sterr,et al.  Noise and instability of an optical lattice clock , 2015, 1507.04949.

[26]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[27]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[28]  J. Ye,et al.  Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s. , 2012, Physical review letters.

[29]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[30]  C. Helstrom Quantum detection and estimation theory , 1969 .

[31]  Vadim N. Smelyanskiy,et al.  Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.

[32]  Konrad Banaszek,et al.  Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600 , 2013, 1305.7268.

[33]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[34]  C. Monroe,et al.  Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. , 2001, Physical review letters.

[35]  Martin Fraas,et al.  Bayesian quantum frequency estimation in presence of collective dephasing , 2013, 1311.5576.

[36]  A. Ludlow,et al.  An Atomic Clock with 10–18 Instability , 2013, Science.

[37]  A. Sørensen,et al.  Efficient atomic clocks operated with several atomic ensembles. , 2013, Physical review letters.

[38]  V. Vuletić,et al.  Orientation-dependent entanglement lifetime in a squeezed atomic clock. , 2010, Physical review letters.

[39]  T L Nicholson,et al.  Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty , 2014, Nature Communications.

[40]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .

[41]  C. F. Roos,et al.  ‘Designer atoms’ for quantum metrology , 2006, Nature.

[42]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[43]  Katarzyna Macieszczak Quantum Fisher Information: Variational principle and simple iterative algorithm for its efficient computation , 2013, 1312.1356.

[44]  Jan Kolodynski,et al.  Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.

[45]  Wineland,et al.  Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[46]  Carlton M. Caves,et al.  Fundamental quantum limit to waveform estimation , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[47]  E. Knill,et al.  Optimizing passive quantum clocks , 2014, 1404.3810.

[48]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[49]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.