Highly efficient, stable and hysteresis‒less planar perovskite solar cell based on chemical bath treated Zn2SnO4 electron transport layer

[1]  Zhiqun Lin,et al.  Simple route to interconnected, hierarchically structured, porous Zn2SnO4 nanospheres as electron transport layer for efficient perovskite solar cells , 2020 .

[2]  S. Akin Boosting the efficiency and stability of perovskite solar cells through facile molecular engineering approaches , 2020 .

[3]  S. Olthof,et al.  Novel inorganic electron transport layers for planar perovskite solar cells: Progress and prospective , 2020 .

[4]  Yucheng Jiang,et al.  Fabricating an optimal rutile TiO2 electron transport layer by delicately tuning TiCl4 precursor solution for high performance perovskite solar cells , 2020 .

[5]  Hongwei Chen,et al.  Suppressing Vacancy Defects and Grain Boundaries via Ostwald Ripening for High‐Performance and Stable Perovskite Solar Cells , 2019, Advanced materials.

[6]  S. Turan,et al.  Inorganic CuFeO2 Delafossite Nanoparticles as Effective Hole Transport Material for Highly Efficient and Long-Term Stable Perovskite Solar Cells. , 2019, ACS applied materials & interfaces.

[7]  Jihuai Wu,et al.  High-Performance and Hysteresis-Free Perovskite Solar Cells Based on Rare-Earth-Doped SnO2 Mesoporous Scaffold , 2019, Research.

[8]  S. Akin Hysteresis-free Planar Perovskite Solar Cells with a Breakthrough Efficiency of 22% and Superior Operational Stability over 2000 Hours. , 2019, ACS applied materials & interfaces.

[9]  A. Abate,et al.  Highly efficient perovskite solar cells based on a Zn2SnO4 compact layer. , 2019, ACS applied materials & interfaces.

[10]  Seong Sik Shin,et al.  Metal Oxide Charge Transport Layers for Efficient and Stable Perovskite Solar Cells , 2019, Advanced Functional Materials.

[11]  Quanzhen Liu,et al.  Pyrrole: an additive for improving the efficiency and stability of perovskite solar cells , 2019, Journal of Materials Chemistry A.

[12]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[13]  Yang Yang,et al.  Addressing the stability issue of perovskite solar cells for commercial applications , 2018, Nature Communications.

[14]  Maximilian Fleischer,et al.  Novel p-dopant toward highly efficient and stable perovskite solar cells , 2018 .

[15]  Q. Gong,et al.  Diboron‐Assisted Interfacial Defect Control Strategy for Highly Efficient Planar Perovskite Solar Cells , 2018, Advanced materials.

[16]  M. B. Upama,et al.  Bilayer SnO2 as Electron Transport Layer for Highly Efficient Perovskite Solar Cells , 2018, ACS Applied Energy Materials.

[17]  W. Chae,et al.  Highly Efficient Amorphous Zn2SnO4 Electron-Selective Layers Yielding over 20% Efficiency in FAMAPbI3-Based Planar Solar Cells , 2018, ACS Energy Letters.

[18]  Li Ji,et al.  A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells , 2018 .

[19]  N. Zheng,et al.  Efficient, Hysteresis‐Free, and Stable Perovskite Solar Cells with ZnO as Electron‐Transport Layer: Effect of Surface Passivation , 2018, Advanced materials.

[20]  Anders Hagfeldt,et al.  Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells , 2018 .

[21]  Kilwon Cho,et al.  Organometal Halide Perovskite Solar Cells with Improved Thermal Stability via Grain Boundary Passivation Using a Molecular Additive , 2017 .

[22]  H. Duan,et al.  Ternary oxide BaSnO3 nanoparticles as an efficient electron-transporting layer for planar perovskite solar cells , 2017 .

[23]  Wolfgang Tress,et al.  Metal Halide Perovskites as Mixed Electronic-Ionic Conductors: Challenges and Opportunities-From Hysteresis to Memristivity. , 2017, The journal of physical chemistry letters.

[24]  Tejas S. Sherkar,et al.  Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions , 2017, ACS energy letters.

[25]  Sungeun Park,et al.  Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions , 2017, Scientific Reports.

[26]  L. Quan,et al.  SOLAR CELLS: Efficient and stable solution‐processed planar perovskite solar cells via contact passivation , 2017 .

[27]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[28]  Anders Hagfeldt,et al.  Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide , 2016 .

[29]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[30]  Nripan Mathews,et al.  Charge Accumulation and Hysteresis in Perovskite‐Based Solar Cells: An Electro‐Optical Analysis , 2015 .

[31]  Zhiqiang Guan,et al.  Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. , 2015, ACS applied materials & interfaces.

[32]  Seong Sik Shin,et al.  High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C , 2015, Nature Communications.

[33]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[34]  E. Alarousu,et al.  Perovskite Oxide SrTiO3 as an Efficient Electron Transporter for Hybrid Perovskite Solar Cells , 2014 .

[35]  Seong Sik Shin,et al.  Zn2SnO4-Based Photoelectrodes for Organolead Halide Perovskite Solar Cells , 2014 .

[36]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[37]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[38]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[39]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[40]  Nripan Mathews,et al.  Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. , 2013, Chemical communications.

[41]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[42]  H. Ji,et al.  The effect of oxygen vacancies on water wettability of a ZnO surface. , 2013, Physical chemistry chemical physics : PCCP.

[43]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[44]  W. P. Mulligan,et al.  Search for improved transparent conducting oxides: A fundamental investigation of CdO, Cd2SnO4, and Zn2SnO4 , 2000 .

[45]  P. K. Nair Semiconductor thin films by chemical bath deposition for solar energy related applications , 1998 .

[46]  Jiajie Fan,et al.  Chemical bath deposited rutile TiO2 compact layer toward efficient planar heterojunction perovskite solar cells , 2017 .