Study of Cu 2 O\ZnO nanowires heterojunction designed by combining electrodeposition and atomic layer deposition

[1]  I. Iatsunskyi,et al.  Tuning of Structural and Optical Properties of Graphene/ZnO Nanolaminates , 2016 .

[2]  K. Leung,et al.  Enhancement of solar cell performance of p-Cu2O/n-ZnO-nanotube and nanorod heterojunction devices , 2016 .

[3]  A. Souissi,et al.  Tuning of Ag doped core−shell ZnO NWs/Cu2O grown by electrochemical deposition , 2015 .

[4]  A. Souissi,et al.  Synthesis and characterization of ZnO/Cu2O core–shell nanowires grown by two-step electrodeposition method , 2015 .

[5]  Yue Zhang,et al.  Three-dimensional ordered ZnO/Cu2O nanoheterojunctions for efficient metal-oxide solar cells. , 2015, ACS applied materials & interfaces.

[6]  Pei Lin,et al.  Electronic Structure Engineering of Cu2O Film/ZnO Nanorods Array All-Oxide p-n Heterostructure for Enhanced Photoelectrochemical Property and Self-powered Biosensing Application , 2015, Scientific Reports.

[7]  Philippe Miele,et al.  Atomic Layer Deposition of zinc oxide for solar cell applications , 2014 .

[8]  J. Michler,et al.  Electrochemical growth of ZnO nanowires on atomic layer deposition coated polystyrene sphere templates , 2013 .

[9]  R. Viter,et al.  Evolution of microstructure and related optical properties of ZnO grown by atomic layer deposition , 2013, Beilstein journal of nanotechnology.

[10]  P. Déjardin,et al.  Slow translocation of polynucleotides and their discrimination by α-hemolysin inside a single track-etched nanopore designed by atomic layer deposition. , 2013, Nanoscale.

[11]  Qianqian Li,et al.  Interface engineering for efficient charge collection in Cu2O/ZnO heterojunction solar cells with ordered ZnO cavity-like nanopatterns , 2013 .

[12]  K. Musselman,et al.  Incompatible Length Scales in Nanostructured Cu2O Solar Cells , 2012 .

[13]  Nicola Pinna,et al.  Atomic Layer Deposition of Nanostructured Materials for Energy and Environmental Applications , 2012, Advanced materials.

[14]  Bingqiang Cao,et al.  Three kinds of Cu2O/ZnO heterostructure solar cells fabricated with electrochemical deposition and their structure-related photovoltaic properties , 2011 .

[15]  D. Perng,et al.  Nano-structured Cu2O solar cells fabricated on sparse ZnO nanorods , 2011 .

[16]  Yuki Nishi,et al.  High-Efficiency Oxide Solar Cells with ZnO/Cu2O Heterojunction Fabricated on Thermally Oxidized Cu2O Sheets , 2011 .

[17]  John R. Tumbleston,et al.  Minority carrier transport length of electrodeposited Cu2O in ZnO/Cu2O heterojunction solar cells , 2011 .

[18]  Kevin P. Musselman,et al.  A Novel Buffering Technique for Aqueous Processing of Zinc Oxide Nanostructures and Interfaces, and Corresponding Improvement of Electrodeposited ZnO‐Cu2O Photovoltaics , 2011 .

[19]  H. Hesse,et al.  Strong Efficiency Improvements in Ultra‐low‐Cost Inorganic Nanowire Solar Cells , 2010, Advanced materials.

[20]  H. Hesse,et al.  Strong Efficiency Improvements in Ultra‐low‐Cost Inorganic Nanowire Solar Cells (Adv. Mater. 35/2010) , 2010 .

[21]  F. Akkari,et al.  Optical, structural, and electrical properties of Cu2O thin films , 2010 .

[22]  Zhao Wang,et al.  Hollow Urchin‐like ZnO thin Films by Electrochemical Deposition , 2010, Advanced materials.

[23]  U. Gibson,et al.  A Simple Two-Step Electrodeposition of Cu2O/ZnO Nanopillar Solar Cells , 2010 .

[24]  W. Warta,et al.  Solar cell efficiency tables (version 35) , 2010 .

[25]  I-Tseng Tang,et al.  Effect of seed layer on the growth of well-aligned ZnO nanowires , 2009 .

[26]  T. Yoon,et al.  Nanoparticle-based approach for the formation of CIS solar cells , 2009 .

[27]  S. Chang,et al.  Cu2O/n-ZnO nanowire solar cells on ZnO:Ga/glass templates , 2007 .

[28]  Jun Pan,et al.  Strategies to increase CdTe solar-cell voltage , 2007 .

[29]  Minoru Inaba,et al.  Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device , 2007 .

[30]  F. Fabregat‐Santiago,et al.  Determination of carrier density of ZnO nanowires by electrochemical techniques , 2006 .

[31]  M. Nolan,et al.  The p-type conduction mechanism in Cu2O: a first principles study. , 2006, Physical chemistry chemical physics : PCCP.

[32]  M. Inaba,et al.  Photochemical Construction of Photovoltaic Device Composed of p-Copper(I) Oxide and n-Zinc Oxide , 2006 .

[33]  S. Ishizuka,et al.  Thin film deposition of Cu2O and application for solar cells , 2006 .

[34]  Claude Lévy-Clément,et al.  ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell , 2005 .

[35]  M. Inaba,et al.  Structural and Electrical Characterizations of Electrodeposited p-Type Semiconductor Cu2O Films , 2005 .

[36]  Y. Liu,et al.  The electrical properties and the interfaces of Cu2O/ZnO/ITO p–i–n heterojunction , 2004 .

[37]  M. Matsuoka,et al.  Performance of Cu2O/ZnO Solar Cell Prepared By Two-Step Electrodeposition , 2004 .

[38]  Martin A. Green,et al.  Very high efficiency silicon solar cells-science and technology , 1999 .

[39]  E. Lavernia,et al.  On the applicability of the x-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials , 1999 .

[40]  Daniel Lincot,et al.  Mechanistic Study of Cathodic Electrodeposition of Zinc Oxide and Zinc Hydroxychloride Films from Oxygenated Aqueous Zinc Chloride Solutions , 1998 .

[41]  Amal K. Ghosh,et al.  High‐efficiency organic solar cells , 1978 .

[42]  Seungshin Baek,et al.  Oxide p-n heterojunction of Cu 2 O/ZnO nanowires and their photovoltaic performance , 2013 .

[43]  J. Heitz,et al.  Enhanced Ca2+Entry and Tyrosine Phosphorylation Mediate Nanostructure-Induced Endothelial Proliferation. , 2013, Journal of nanomaterials.

[44]  R. Friend,et al.  Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer , 2012 .