Fitness-distance balance based artificial ecosystem optimisation to solve transient stability constrained optimal power flow problem

[1]  El-Ghazali Talbi,et al.  Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art , 2021, Eur. J. Oper. Res..

[2]  B. Tharani,et al.  An AC–DC/DC–DC hybrid multi-port embedded energy router based steady-state power flow optimizing in power system using substantial transformative energy management strategy , 2020, Journal of Ambient Intelligence and Humanized Computing.

[3]  K. R. Suja,et al.  Mitigation of power quality issues in smart grid using levy flight based moth flame optimization algorithm , 2021, Journal of Ambient Intelligence and Humanized Computing.

[4]  Kenneth Sörensen,et al.  Meta-analysis of metaheuristics: Quantifying the effect of adaptiveness in adaptive large neighborhood search , 2020, Eur. J. Oper. Res..

[5]  Ehsan Abbasi,et al.  Single and multi-objective optimal power flow using a new differential-based harmony search algorithm , 2020, J. Ambient Intell. Humaniz. Comput..

[6]  Juliano Pierezan,et al.  Chaotic coyote algorithm applied to truss optimization problems , 2021 .

[7]  Amar Ramdane-Cherif,et al.  A comprehensive survey of Crow Search Algorithm and its applications , 2020, Artificial Intelligence Review.

[8]  Ajoy Kumar Chakraborty,et al.  HSOS: a novel hybrid algorithm for solving the transient-stability-constrained OPF problem , 2020, Soft Comput..

[9]  Md Tahmid Rashid,et al.  CovidSens: a vision on reliable social sensing for COVID-19 , 2020, Artificial Intelligence Review.

[10]  Hamdi Tolga Kahraman,et al.  Fitness-distance balance (FDB): A new selection method for meta-heuristic search algorithms , 2020, Knowl. Based Syst..

[11]  Seyedali Mirjalili,et al.  Henry gas solubility optimization: A novel physics-based algorithm , 2019, Future Gener. Comput. Syst..

[12]  Weiguo Zhao,et al.  Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm , 2019, Neural Computing and Applications.

[13]  Xin-She Yang,et al.  Bio-inspired computation: Where we stand and what's next , 2019, Swarm Evol. Comput..

[14]  Hossam Faris,et al.  Harris hawks optimization: Algorithm and applications , 2019, Future Gener. Comput. Syst..

[15]  Farhad Soleimanian Gharehchopogh,et al.  A comprehensive survey on symbiotic organisms search algorithms , 2019, Artificial Intelligence Review.

[16]  A. A. Zaidan,et al.  Novel meta-heuristic bald eagle search optimisation algorithm , 2019, Artificial Intelligence Review.

[17]  Sankalap Arora,et al.  A novel chaotic selfish herd optimizer for global optimization and feature selection , 2019, Artificial Intelligence Review.

[18]  Satvir Singh,et al.  Butterfly optimization algorithm: a novel approach for global optimization , 2018, Soft Computing.

[19]  Serkan Dereli,et al.  A meta-heuristic proposal for inverse kinematics solution of 7-DOF serial robotic manipulator: quantum behaved particle swarm algorithm , 2019, Artificial Intelligence Review.

[20]  Adam P. Piotrowski,et al.  Step-by-step improvement of JADE and SHADE-based algorithms: Success or failure? , 2018, Swarm Evol. Comput..

[21]  Gaige Wang,et al.  Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems , 2016, Memetic Computing.

[22]  Hossam Faris,et al.  Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems , 2017, Adv. Eng. Softw..

[23]  Vivekananda Mukherjee,et al.  Application of chaotic whale optimisation algorithm for transient stability constrained optimal power flow , 2017 .

[24]  Al-Attar Ali Mohamed,et al.  Optimal power flow using moth swarm algorithm , 2017 .

[25]  Provas Kumar Roy,et al.  Transient stability constrained optimal power flow using oppositional krill herd algorithm , 2016 .

[26]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[27]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[28]  Hussain Shareef,et al.  Lightning search algorithm , 2015, Appl. Soft Comput..

[29]  Seyed Mohammad Mirjalili,et al.  Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm , 2015, Knowl. Based Syst..

[30]  Bin Zhou,et al.  An improved GSO method for discontinuous non-convex transient stability constrained optimal power flow with complex system model , 2015 .

[31]  Ulaş Kılıç,et al.  Chaotic artificial bee colony algorithm based solution of security and transient stability constrained optimal power flow , 2015 .

[32]  Kenneth Sörensen,et al.  Metaheuristics - the metaphor exposed , 2015, Int. Trans. Oper. Res..

[33]  A. Gandomi Interior search algorithm (ISA): a novel approach for global optimization. , 2014, ISA transactions.

[34]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[35]  A. Karami,et al.  Artificial bee colony algorithm for solving multi-objective optimal power flow problem , 2013 .

[36]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..

[37]  Serhat Duman,et al.  Optimal power flow using gravitational search algorithm , 2012 .

[38]  Taher Niknam,et al.  A modified shuffle frog leaping algorithm for multi-objective optimal power flow , 2011 .

[39]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[40]  K. S. Swarup,et al.  Solving multi-objective optimal power flow using differential evolution , 2008 .

[41]  Ka Wing Chan,et al.  Transient stability constrained optimal power flow using particle swarm optimisation , 2007 .

[42]  B. Yegnanarayana,et al.  Genetic-algorithm-based optimal power flow for security enhancement , 2005 .

[43]  Ka Wing Chan,et al.  Direct nonlinear primal–dual interior-point method for transient stability constrained optimal power flow , 2005 .

[44]  K. Fahd,et al.  Optimal Power Flow Using Tabu Search Algorithm , 2002 .

[45]  Deqiang Gan,et al.  Stability-constrained optimal power flow , 2000 .