Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics.

Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors. Particular attention is paid to ways in which mechanical deformability and electronic performance can coexist. The review begins with a discussion of flexible and stretchable devices of all types, and in particular the unique characteristics of organic semiconductors. It then discusses the mechanical properties most relevant to deformable devices. In particular, it describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical "imperceptibility" if worn on the skin. A description of techniques of metrology precedes a discussion of the mechanical properties of three classes of organic semiconductors: π-conjugated polymers, small molecules, and composites. The discussion of each class of materials focuses on molecular structure and how this structure (and postdeposition processing) influences the solid-state packing structure and thus the mechanical properties. The review concludes with applications of organic semiconductor devices in which every component is intrinsically stretchable or highly flexible.

[1]  C. Keplinger,et al.  25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters , 2013, Advanced materials.

[2]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[3]  Sigurd Wagner,et al.  Stretchable Interconnects for Elastic Electronic Surfaces , 2005, Proceedings of the IEEE.

[4]  Suren A. Gevorgyan,et al.  Stability of Polymer Solar Cells , 2012, Advanced materials.

[5]  David C. Martin,et al.  Electrochemical deposition and characterization of carboxylic acid functionalized PEDOT copolymers , 2014 .

[6]  John A. Rogers,et al.  Stretchable Electronics: Materials Strategies and Devices , 2009 .

[7]  Qibing Pei,et al.  Healable capacitive touch screen sensors based on transparent composite electrodes comprising silver nanowires and a furan/maleimide diels-alder cycloaddition polymer. , 2014, ACS nano.

[8]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[9]  Nae-Eung Lee,et al.  Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components , 2017, Advanced materials.

[10]  B. Liu,et al.  Study of mechanical properties of light-emitting polymer films by nano-indentation technique , 2005 .

[11]  Zhenan Bao,et al.  Toward mechanically robust and intrinsically stretchable organic solar cells: Evolution of photovoltaic properties with tensile strain , 2012 .

[12]  Alberto Salleo,et al.  Microstructural Characterization and Charge Transport in Thin Films of Conjugated Polymers , 2010, Advanced materials.

[13]  Yeliang Wang,et al.  Tuning structural and mechanical properties of two-dimensional molecular crystals: the roles of carbon side chains. , 2011, Nano letters (Print).

[14]  Richard D. McCullough,et al.  THE CHEMISTRY OF CONDUCTING POLYTHIOPHENES , 1998 .

[15]  O. Inganäs,et al.  Determination of Thermal Transition Depth Profiles in Polymer Semiconductor Films with Ellipsometry , 2013 .

[16]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[17]  René A. J. Janssen,et al.  Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold , 2006, Nature materials.

[18]  Claire H. Woo,et al.  Incorporation of furan into low band-gap polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[19]  Peter Andersson,et al.  The Origin of the High Conductivity of Poly(3,4-ethylenedioxythiophene)−Poly(styrenesulfonate) (PEDOT−PSS) Plastic Electrodes , 2006 .

[20]  Heung Cho Ko,et al.  Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras. , 2010, Small.

[21]  Darren J. Lipomi,et al.  Best of Both Worlds: Conjugated Polymers Exhibiting Good Photovoltaic Behavior and High Tensile Elasticity , 2014 .

[22]  Eric J. Sawyer,et al.  Large increase in stretchability of organic electronic materials by encapsulation , 2016 .

[23]  Bryan D. Vogt,et al.  Elastic Moduli of Ultrathin Amorphous Polymer Films , 2006 .

[24]  R. J. Kline,et al.  Plastic Deformation of Polymer Blends as a Means to Achieve Stretchable Organic Transistors , 2017, Advanced electronic materials.

[25]  Ronn Andriessen,et al.  Scaling Up ITO‐Free Solar Cells , 2014 .

[26]  T. Someya,et al.  Bending Effect of Organic Field-Effect Transistors with Polyimide Gate Dielectric Layers , 2005 .

[27]  S. Bauer,et al.  Materials for stretchable electronics , 2012 .

[28]  Mihai Irimia-Vladu,et al.  Exotic materials for bio-organic electronics , 2011 .

[29]  M. Kröger,et al.  Primitive Path Networks Generated by Annealing and Geometrical Methods: Insights into Differences , 2007 .

[30]  M. Kröger,et al.  Topological analysis of polymeric melts: chain-length effects and fast-converging estimators for entanglement length. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Richard D. McCullough,et al.  Employing MALDI-MS on Poly(alkylthiophenes): Analysis of Molecular Weights, Molecular Weight Distributions, End-Group Structures, and End-Group Modifications , 1999 .

[32]  Samuel E. Root,et al.  Comparison of Methods for Determining the Mechanical Properties of Semiconducting Polymer Films for Stretchable Electronics. , 2017, ACS applied materials & interfaces.

[33]  B. Ruiter,et al.  Dielectrical and dynamic mechanical properties of three poly(3-N-Alkaylthiophene)s , 1993 .

[34]  Zhenan Bao,et al.  Mechanistic Considerations of Bending‐Strain Effects within Organic Semiconductors on Polymer Dielectrics , 2012 .

[35]  Nancy Wilkins-Diehr,et al.  XSEDE: Accelerating Scientific Discovery , 2014, Computing in Science & Engineering.

[36]  Wen Yang,et al.  On the tear resistance of skin , 2015, Nature Communications.

[37]  Maxim Shkunov,et al.  Liquid-crystalline semiconducting polymers with high charge-carrier mobility , 2006, Nature materials.

[38]  Liyan Yu,et al.  The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study , 2013 .

[39]  J. Washiyama,et al.  Chain Pullout fracture of polymer interfaces , 1994 .

[40]  Yanchun Han,et al.  Oriented poly(3-hexylthiophene) nanofibril with the π-π stacking growth direction by solvent directional evaporation. , 2011, Langmuir.

[41]  Minkwan Shin,et al.  Approaches to Stretchable Polymer Active Channels for Deformable Transistors , 2016 .

[42]  Niyazi Serdar Sariciftci,et al.  Morphology of polymer/fullerene bulk heterojunction solar cells , 2006 .

[43]  Christopher Bruner,et al.  Role of Molecular Weight on the Mechanical Device Properties of Organic Polymer Solar Cells , 2014 .

[44]  René A. J. Janssen,et al.  Tough, Semiconducting Polyethylene‐poly(3‐hexylthiophene) Diblock Copolymers , 2007 .

[45]  Zhenan Bao,et al.  Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes , 2012 .

[46]  Xiaodan Gu,et al.  Intrinsically stretchable and healable semiconducting polymer for organic transistors , 2016, Nature.

[47]  Yonggang Huang,et al.  Stretchable GaAs Photovoltaics with Designs That Enable High Areal Coverage , 2011, Advanced materials.

[48]  Jarvist M. Frost,et al.  Binary Organic Photovoltaic Blends: A Simple Rationale for Optimum Compositions , 2008 .

[49]  M. Chabinyc,et al.  Recent progress in the morphology of bulk heterojunction photovoltaics , 2011 .

[50]  Daryl R. Kipke,et al.  Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. , 2010, Small.

[51]  John A Rogers,et al.  Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates. , 2008, Nano letters.

[52]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[53]  J. Shim,et al.  Polydimethylsiloxane as a macromolecular additive for enhanced performance of molecular bulk heterojunction organic solar cells. , 2011, ACS applied materials & interfaces.

[54]  Timothy O'Connor,et al.  Soft Power: Stretchable and Ultra-Flexible Energy Sources for Wearable and Implantable Devices , 2016 .

[55]  Zhenan Bao,et al.  Stretchable, elastic materials and devices for solar energy conversion , 2011 .

[56]  Martin Kröger,et al.  Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems , 2005, Comput. Phys. Commun..

[57]  George M. Whitesides,et al.  Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer , 1998, Nature.

[58]  M. Beiner,et al.  Side-Chain Dynamics and Crystallization in a Series of Regiorandom Poly(3-alkylthiophenes) , 2009 .

[59]  Siegfried Bauer,et al.  Capacitive extensometry for transient strain analysis of dielectric elastomer actuators , 2008 .

[60]  F. Huang,et al.  Acenaphtho[1,2-b]quinoxaline diimides derivative as a potential small molecule non-fullerene acceptor for organic solar cells , 2016 .

[61]  Daniel A. Fischer,et al.  Charge Transport in Highly Face-On Poly(3-hexylthiophene) Films , 2013 .

[62]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[63]  Lai-Peng Ma,et al.  25th Anniversary Article: Carbon Nanotube‐ and Graphene‐Based Transparent Conductive Films for Optoelectronic Devices , 2014, Advanced materials.

[64]  J. Dual,et al.  Mechanical characterization of PEDOT : PSS thin films , 2009 .

[65]  A. Heeger,et al.  Mechanical and electrical properties of polyacetylene films oriented by tensile drawing , 1991 .

[66]  G. Arya,et al.  Simultaneous Iterative Boltzmann Inversion for Coarse-Graining of Polyurea , 2014 .

[67]  Sigurd Wagner,et al.  Mechanisms of reversible stretchability of thin metal films on elastomeric substrates , 2006 .

[68]  Michael D. Gilchrist,et al.  Mechanical Properties of Excised Human Skin , 2010 .

[69]  M. Toney,et al.  Non‐Conjugated Flexible Linkers in Semiconducting Polymers: A Pathway to Improved Processability without Compromising Device Performance , 2016 .

[70]  Christine K. Luscombe,et al.  Structure and design of polymers for durable, stretchable organic electronics , 2017 .

[71]  Cheng-Kuang Lee,et al.  Multiscale molecular simulations of the nanoscale morphologies of P3HT:PCBM blends for bulk heterojunction organic photovoltaic cells , 2011 .

[72]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[73]  F. Wudl,et al.  Highly oriented, low-modulus materials from liquid crystalline polymers : the ultimate penalty for solubilizing alkyl side chains , 1990 .

[74]  Khai Leok Chan,et al.  Organic non-fullerene acceptors for organic photovoltaics , 2011 .

[75]  F. Krebs,et al.  Mechanical Properties of a Library of Low-Band-Gap Polymers , 2016 .

[76]  Zhenan Bao,et al.  A Rapid and Facile Soft Contact Lamination Method: Evaluation of Polymer Semiconductors for Stretchable Transistors , 2014 .

[77]  Donal D. C. Bradley,et al.  Gravure printing for three subsequent solar cell layers of inverted structures on flexible substrates , 2011 .

[78]  C. Bettinger,et al.  Topographic substrates as strain relief features in stretchable organic thin film transistors , 2013 .

[79]  D. Lipomi Stretchable Figures of Merit in Deformable Electronics , 2016, Advanced materials.

[80]  Lee J. Richter,et al.  Anisotropic Structure and Charge Transport in Highly Strain‐Aligned Regioregular Poly(3‐hexylthiophene) , 2011 .

[81]  Alberto Salleo,et al.  High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor , 2016, Nature Communications.

[82]  Frederik C. Krebs,et al.  Upscaling from single cells to modules – fabrication of vacuum- and ITO-free polymer solar cells on flexible substrates with long lifetime , 2014 .

[83]  Christopher M. Proctor,et al.  Mechanical Properties of Solution-Processed Small-Molecule Semiconductor Films. , 2016, ACS applied materials & interfaces.

[84]  T. Someya,et al.  A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches. , 2007, Nature materials.

[85]  H. Metzner,et al.  Glass transition temperature and thermal expansion behaviour of polymer films investigated by variable temperature spectroscopic ellipsometry , 1998 .

[86]  Z. Suo,et al.  Mechanics of thin-film transistors and solar cells on flexible substrates , 2006 .

[87]  Callie W. Babbitt,et al.  Material and energy intensity of fullerene production. , 2011, Environmental science & technology.

[88]  M. Kaltenbrunner,et al.  Mechanically Adaptive Organic Transistors for Implantable Electronics , 2014, Advanced materials.

[89]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[90]  C Grant Willson,et al.  The future of lithography: SEMATECH Litho Forum 2008. , 2008, ACS nano.

[91]  Z. Suo,et al.  Mechanics of rollable and foldable film-on-foil electronics , 1999 .

[92]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[93]  Kurt Kremer,et al.  Multiscale simulation of soft matter systems – from the atomistic to the coarse-grained level and back , 2009 .

[94]  Christian M. Siket,et al.  Arrays of Ultracompliant Electrochemical Dry Gel Cells for Stretchable Electronics , 2010, Advanced materials.

[95]  Mechanical and electrical properties of highly oriented polyacetylene films , 1991 .

[96]  D. Lipomi,et al.  Effect of Broken Conjugation on the Stretchability of Semiconducting Polymers. , 2016, Macromolecular rapid communications.

[97]  Jeff Moulton,et al.  Electrical and mechanical properties of oriented poly(3-alkylthiophenes): 2. Effect of side-chain length , 1992 .

[98]  Z. Suo,et al.  Stretchable gold conductors on elastomeric substrates , 2003 .

[99]  S. Mannsfeld,et al.  Quantitative determination of organic semiconductor microstructure from the molecular to device scale. , 2012, Chemical reviews.

[100]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[101]  Willi Volksen,et al.  A buckling-based metrology for measuring the elastic moduli of polymeric thin films , 2004, Nature materials.

[102]  Philip A. Yuya,et al.  Simulated Dilatometry and Static Deformation Prediction of Glass Transition and Mechanical Properties of Polyacetylene and Poly(para‐phenylene vinylene) , 2016 .

[103]  Ole Hagemann,et al.  A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration , 2009 .

[104]  C. Groves,et al.  Relating Molecular Morphology to Charge Mobility in Semicrystalline Conjugated Polymers , 2016 .

[105]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[106]  R. Rieke,et al.  The first regioregular head-to-tail poly(3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization , 1992 .

[107]  Christopher M. Stafford,et al.  Surface Wrinkling: A Versatile Platform for Measuring Thin‐Film Properties , 2011, Advanced materials.

[108]  Timothy O'Connor,et al.  Molecularly Stretchable Electronics , 2014 .

[109]  Mikkel Jørgensen,et al.  Upscaling of polymer solar cell fabrication using full roll-to-roll processing. , 2010, Nanoscale.

[110]  Adam D. Printz,et al.  Yield Point of Semiconducting Polymer Films on Stretchable Substrates Determined by Onset of Buckling. , 2015, ACS applied materials & interfaces.

[111]  Liangbing Hu,et al.  Transient Electronics: Materials and Devices , 2016 .

[112]  Jean-Luc Brédas,et al.  Entanglements in P3HT and their influence on thin-film mechanical properties: Insights from molecular dynamics simulations , 2015 .

[113]  Cheng Wang,et al.  Flexible, highly efficient all-polymer solar cells , 2015, Nature Communications.

[114]  Adam D. Printz,et al.  [70]PCBM and Incompletely Separated Grades of Methanofullerenes Produce Bulk Heterojunctions with Increased Robustness for Ultra-Flexible and Stretchable Electronics , 2015 .

[115]  Eszter Voroshazi,et al.  Decohesion Kinetics of PEDOT:PSS Conducting Polymer Films , 2014 .

[116]  Kurt Kremer,et al.  Rheology and Microscopic Topology of Entangled Polymeric Liquids , 2004, Science.

[117]  Antonio Facchetti,et al.  π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications† , 2011 .

[118]  M. Ratner,et al.  Conformational order in aggregates of conjugated polymers. , 2015, Journal of the American Chemical Society.

[119]  Darren J. Lipomi,et al.  Viability of stretchable poly(3-heptylthiophene) (P3HpT) for organic solar cells and field-effect transistors , 2015 .

[120]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[121]  K. West,et al.  Highly Stretchable and Conductive Polymer Material Made from Poly(3,4‐ethylenedioxythiophene) and Polyurethane Elastomers , 2007 .

[122]  Craig J. Hawker,et al.  Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend , 2011 .

[123]  Huanyu Cheng,et al.  A Physically Transient Form of Silicon Electronics , 2012, Science.

[124]  Wen‐Chang Chen,et al.  Isoindigo-Based Semiconducting Polymers Using Carbosilane Side Chains for High Performance Stretchable Field-Effect Transistors , 2016 .

[125]  Yu-Sheng Hsiao,et al.  Influence of the bridging atom on the electrochromic performance of a cyclopentadithiophene polymer , 2016 .

[126]  M. Chabinyc,et al.  Phase separation in bulk heterojunctions of semiconducting polymers and fullerenes for photovoltaics. , 2014, Annual review of physical chemistry (Print).

[127]  K. Cho,et al.  Room Temperature Fluorescent Conjugated Polymer Gums , 2014 .

[128]  Qibing Pei,et al.  Intrinsically Stretchable Polymer Light‐Emitting Devices Using Carbon Nanotube‐Polymer Composite Electrodes , 2011, Advanced materials.

[129]  Christoph J. Brabec,et al.  Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells , 2009 .

[130]  Z. Suo,et al.  Design and performance of thin metal film interconnects for skin-like electronic circuits , 2004, IEEE Electron Device Letters.

[131]  Hung Phan,et al.  High‐Mobility Field‐Effect Transistors Fabricated with Macroscopic Aligned Semiconducting Polymers , 2014, Advanced materials.

[132]  Feng Liu,et al.  Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics , 2013 .

[133]  G. Rotter,et al.  Dynamic mechanical analysis of the glass transition: curve resolving applied to polymers , 1992 .

[134]  F. Krebs,et al.  Aesthetically pleasing conjugated polymer:fullerene blends for blue-green solar cells via roll-to-roll processing. , 2012, ACS applied materials & interfaces.

[135]  M. Kaltenbrunner,et al.  An ultra-lightweight design for imperceptible plastic electronics , 2013, Nature.

[136]  Zhenan Bao,et al.  Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility , 1996 .

[137]  Edward J. Kramer,et al.  Quadrites and crossed-chain crystal structures in polymer semiconductors. , 2014, Nano letters.

[138]  Zhenan Bao,et al.  Highly Stretchable Transistors Using a Microcracked Organic Semiconductor , 2014, Advanced materials.

[139]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[140]  E. Reichmanis,et al.  Elastomer-Polymer Semiconductor Blends for High-Performance Stretchable Charge Transport Networks , 2016 .

[141]  Kurt Kremer,et al.  Identifying the primitive path mesh in entangled polymer liquids , 2004 .

[142]  G. Beaucage,et al.  Ellipsometric study of the glass transition and thermal expansion coefficients of thin polymer films , 1993 .

[143]  M. Thelakkat,et al.  Simultaneous morphological stability and high charge carrier mobilities in donor–acceptor block copolymer/PCBM blends , 2016 .

[144]  F. Koch,et al.  "Fibonacci's route" to regioregular oligo(3-hexylthiophene)s. , 2013, Journal of the American Chemical Society.

[145]  Woosik Lee,et al.  Fractal design concepts for stretchable electronics , 2014, Nature Communications.

[146]  M. Toney,et al.  Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation. , 2009, Nano letters.

[147]  Jianguo Mei,et al.  Conjugation-Break Spacers in Semiconducting Polymers: Impact on Polymer Processability and Charge Transport Properties , 2015 .

[148]  Christopher Bruner,et al.  Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices , 2013 .

[149]  R. Dauskardt,et al.  Film stresses and electrode buckling in organic solar cells , 2012 .

[150]  Xuemei Sun,et al.  Stretchable, Wearable Dye‐Sensitized Solar Cells , 2014, Advanced materials.

[151]  Michael W. Kudenov,et al.  Organic photovoltaic cells with controlled polarization sensitivity , 2014 .

[152]  Adam D. Printz,et al.  Fatigue in organic semiconductors: Spectroscopic evolution of microstructure due to cyclic loading in poly(3-heptylthiophene) , 2016 .

[153]  Benjamin C. K. Tee,et al.  Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring , 2013, Nature Communications.

[154]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[155]  Liyuan Han,et al.  Fabrication of Stretch-Oriented Regioregular Poly(3-Hexylthiophene) film and Its Application to Organic Field-Effect Transistors , 2009 .

[156]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[157]  Sigurd Wagner,et al.  Stretchable wavy metal interconnects , 2004 .

[158]  M. Kaltenbrunner,et al.  Ultrathin and lightweight organic solar cells with high flexibility , 2012, Nature Communications.

[159]  Richard Moser,et al.  From Playroom to Lab: Tough Stretchable Electronics Analyzed with a Tabletop Tensile Tester Made from Toy‐Bricks , 2016, Advanced science.

[160]  Stéphanie P. Lacour,et al.  Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates , 2009 .

[161]  Zhibin Yu,et al.  Elastomeric polymer light-emitting devices and displays , 2013, Nature Photonics.

[162]  Mats Andersson,et al.  Predicting thermal stability of organic solar cells through an easy and fast capacitance measurement , 2015 .

[163]  Zhenan Bao,et al.  Side Chain Engineering in Solution-Processable Conjugated Polymers , 2014 .

[164]  Roland Faller,et al.  Coarse-Grained Computer Simulations of Polymer/Fullerene Bulk Heterojunctions for Organic Photovoltaic Applications. , 2010, Journal of chemical theory and computation.

[165]  N. Larsen,et al.  Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stamping , 2007 .

[166]  R. J. Kline,et al.  Poly(3-hexylthiophene) and [6,6]-Phenyl-C61-butyric Acid Methyl Ester Mixing in Organic Solar Cells , 2012 .

[167]  Zhenan Bao,et al.  Effects of Molecular Structure and Packing Order on the Stretchability of Semicrystalline Conjugated Poly(Tetrathienoacene‐diketopyrrolopyrrole) Polymers , 2017 .

[168]  C. Müller On the Glass Transition of Polymer Semiconductors and Its Impact on Polymer Solar Cell Stability , 2015 .

[169]  Xiaodong Chen,et al.  Stretchable Organic Semiconductor Devices , 2016, Advanced materials.

[170]  R. J. Kline,et al.  Anisotropic Elastic Modulus of Oriented Regioregular Poly(3-hexylthiophene) Films , 2016 .

[171]  Yonggang Huang,et al.  Silicon nanomembranes for fingertip electronics , 2012, Nanotechnology.

[172]  Jenny Clark,et al.  Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. , 2007, Physical review letters.

[173]  Frederik C. Krebs,et al.  Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells , 2012 .

[174]  Roar R. Søndergaard,et al.  Efficient decommissioning and recycling of polymer solar cells: justification for use of silver , 2014 .

[175]  C. McNeill,et al.  High‐Mobility Naphthalene Diimide and Selenophene‐Vinylene‐Selenophene‐Based Conjugated Polymer: n‐Channel Organic Field‐Effect Transistors and Structure–Property Relationship , 2016 .

[176]  Yury Gogotsi,et al.  Nano Day: Celebrating the Next Decade of Nanoscience and Nanotechnology. , 2016, ACS nano.

[177]  A. Kahn,et al.  Electronic structure and carrier transport at laminated polymer homojunctions , 2013 .

[178]  R. Dauskardt,et al.  Cohesion and device reliability in organic bulk heterojunction photovoltaic cells , 2012 .

[179]  Christian Bénar,et al.  Organic Electrochemical Transistors for Clinical Applications , 2015, Advanced healthcare materials.

[180]  Joon Hak Oh,et al.  Tuning Mechanical and Optoelectrical Properties of Poly(3-hexylthiophene) through Systematic Regioregularity Control , 2015 .

[181]  Callie W. Babbitt,et al.  Cumulative energy demand for small molecule and polymer photovoltaics , 2013 .

[182]  Z. Suo,et al.  Metal films on polymer substrates stretched beyond 50 , 2007 .

[183]  John S. Villarrubia,et al.  Nanoindentation of Polymers: An Overview | NIST , 2001 .

[184]  Dongha Tahk,et al.  Elastic Moduli of Organic Electronic Materials by the Buckling Method , 2009 .

[185]  Mikkel Jørgensen,et al.  25th Anniversary Article: Rise to Power – OPV‐Based Solar Parks , 2014, Advanced materials.

[186]  Udo Lang,et al.  Piezoresistive properties of PEDOT: PSS , 2009 .

[187]  Frederik C. Krebs,et al.  Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing , 2009 .

[188]  Nicholas V. Annetta,et al.  A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology , 2010, Science Translational Medicine.

[189]  Manikandan Jayaraman,et al.  Self-orienting head-to-tail poly(3-alkylthiophenes): new insights on structure-property relationships in conducting polymers , 1993 .

[190]  F. Krebs,et al.  Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cells , 2015 .

[191]  Timothy O'Connor,et al.  Stretching and conformal bonding of organic solar cells to hemispherical surfaces , 2014 .

[192]  Jan Fyenbo,et al.  Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative , 2010 .

[193]  R. Dauskardt,et al.  Molecular-Scale Understanding of Cohesion and Fracture in P3HT:Fullerene Blends. , 2015, ACS applied materials & interfaces.

[194]  Tae-Wook Kim,et al.  Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells , 2009 .

[195]  F. Koch,et al.  Thermal and structural characteristics of oligo(3-hexylthiophene)s (3HT)n, n = 4-36. , 2013, Journal of the American Chemical Society.

[196]  Frederik C. Krebs,et al.  All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps , 2009 .

[197]  Benjamin C. K. Tee,et al.  Stretchable Organic Solar Cells , 2011, Advanced materials.

[198]  S. Chen,et al.  Structure/properties of conjugated conductive polymers. 1. Neutral poly(3-alkythiophene)s , 1992 .

[199]  H. Brown,et al.  Molecular Weight Effects in Chain Pullout , 1994 .

[200]  Y. Kim,et al.  Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post‐Treatment for ITO‐Free Organic Solar Cells , 2011 .

[201]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[202]  Timothy O'Connor,et al.  Wearable organic solar cells with high cyclic bending stability: Materials selection criteria , 2016 .

[203]  Adam D. Printz,et al.  Role of molecular mixing on the stiffness of polymer:fullerene bulk heterojunction films , 2015 .

[204]  R. D. Mccullough,et al.  Increased Toughness and Excellent Electronic Properties in Regioregular Random Copolymers of 3‐Alkylthiophenes and Thiophene , 2017 .

[205]  Christian Bénar,et al.  Conducting Polymer Electrodes for Electroencephalography , 2014, Advanced Healthcare Materials.

[206]  Fred Wudl,et al.  Polymer-fullerene miscibility: a metric for screening new materials for high-performance organic solar cells. , 2012, Journal of the American Chemical Society.

[207]  Susan Dumps,et al.  A model study. , 1988, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[208]  Samuel E. Root,et al.  Modelling the morphology and thermomechanical behaviour of low-bandgap conjugated polymers and bulk heterojunction films , 2017 .

[209]  J. Seltz The Estimation of Mechanical Properties of Polymers from Molecular Structure , 2002 .

[210]  Choon Chiang Foo,et al.  Stretchable, Transparent, Ionic Conductors , 2013, Science.

[211]  Timothy O'Connor,et al.  Plasticization of PEDOT:PSS by Common Additives for Mechanically Robust Organic Solar Cells and Wearable Sensors , 2015 .

[212]  Daniel J. Burke,et al.  Mechanical Properties of Conjugated Polymers and Polymer‐Fullerene Composites as a Function of Molecular Structure , 2014 .

[213]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[214]  Martin Heeney,et al.  Correlations between mechanical and electrical properties of polythiophenes. , 2010, ACS nano.

[215]  A. Heeger,et al.  Mechanical and electrical properties of poly-(2,5-thienylene vinylene) fibers , 1990 .

[216]  Viktor Malyarchuk,et al.  Paraboloid electronic eye cameras using deformable arrays of photodetectors in hexagonal mesh layouts , 2010 .

[217]  I. M. Ward,et al.  Mechanical Properties of Solid Polymers: Third Edition , 2012 .

[218]  Qibing Pei,et al.  Highly Flexible Silver Nanowire Electrodes for Shape‐Memory Polymer Light‐Emitting Diodes , 2011, Advanced materials.

[219]  Guillermo C Bazan,et al.  "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. , 2009, Accounts of chemical research.

[220]  M. Beiner,et al.  Confined dynamics and crystallization in self-assembled alkyl nanodomains. , 2010, The journal of physical chemistry. B.

[221]  A. Heeger,et al.  NEXAFS Spectroscopy Reveals the Molecular Orientation in Blade-Coated Pyridal[2,1,3]thiadiazole-Containing Conjugated Polymer Thin Films , 2015 .

[222]  Takao Someya,et al.  Ultrathin, highly flexible and stretchable PLEDs , 2013, Nature Photonics.

[223]  Christoph J. Brabec,et al.  Combinatorial Screening of Polymer:Fullerene Blends for Organic Solar Cells by Inkjet Printing , 2011 .

[224]  M. Shkunov,et al.  Separate charge transport pathways determined by the time of flight method in bimodal polytriarylamine , 2009 .

[225]  George G. Malliaras,et al.  The Rise of Organic Bioelectronics , 2014 .

[226]  G. Malliaras,et al.  Engineering hydrophilic conducting composites with enhanced ion mobility. , 2014, Physical chemistry chemical physics : PCCP.

[227]  Boris Murmann,et al.  Highly stretchable polymer semiconductor films through the nanoconfinement effect , 2017, Science.

[228]  Eric J. Sawyer,et al.  Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants , 2015 .

[229]  Timothy O'Connor,et al.  Toward organic electronics with properties inspired by biological tissue. , 2015, Journal of materials chemistry. B.

[230]  M. Toney,et al.  Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells , 2012 .

[231]  Yves Leterrier,et al.  Frequency dependent dielectric and mechanical behavior of elastomers for actuator applications , 2009 .

[232]  D. Fichou,et al.  Direct Observation of Alkyl Chain Interdigitation in Conjugated Polyquarterthiophene Self‐Organized on Graphite Surfaces , 2008 .

[233]  Samuel E. Root,et al.  Predicting the Mechanical Properties of Organic Semiconductors Using Coarse-Grained Molecular Dynamics Simulations , 2016 .

[234]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[235]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[236]  Qibing Pei,et al.  Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric , 2015, Nature Communications.

[237]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[238]  John A. Rogers,et al.  Materials for stretchable electronics in bioinspired and biointegrated devices , 2012 .

[239]  R. Dauskardt,et al.  Adhesion properties of inverted polymer solarcells: Processing and film structure parameters , 2013 .

[240]  Jong‐Jin Park,et al.  Highly Stretchable Polymer Transistors Consisting Entirely of Stretchable Device Components , 2014, Advances in Materials.

[241]  C. Brabec,et al.  Polyterthiophenes as Donors for Polymer Solar Cells , 2007 .

[242]  Bethany I Lemanski,et al.  Correlating Stiffness, Ductility, and Morphology of Polymer:Fullerene Films for Solar Cell Applications , 2013 .

[243]  Reinhard Schwödiauer,et al.  Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. , 2015, Nature Materials.